Maximum Power Transfer of a Photovoltaic Microgeneration System Using PSO-Based Dynamic Modeling

IF 3 4区 工程技术 Q3 ENERGY & FUELS
Energies Pub Date : 2024-07-26 DOI:10.3390/en17153700
Giovanny Chavez, Luis Tipán
{"title":"Maximum Power Transfer of a Photovoltaic Microgeneration System Using PSO-Based Dynamic Modeling","authors":"Giovanny Chavez, Luis Tipán","doi":"10.3390/en17153700","DOIUrl":null,"url":null,"abstract":"This research aims to implement an already developed algorithm to obtain the maximum power transfer of a solar generation field based on a dynamic approach. The study addresses the sizing of the load to be supplied, which is a residential building. On the other hand, it also considers the field sizing as a function of the load and the operating characteristics of the selected inverter. The irradiance data correspond to the hourly record of a station that is part of the network of meteorological stations in Quito. Quito was chosen as the location for this research due to the optimization algorithm’s practical application and the availability of experimental equipment. The demand sizing is based on the regulations of the distribution company with jurisdiction in the area, which makes it a suitable test bed for the algorithm. The optimization algorithm is developed using Python (version 3.9), and the analysis of the behavior of the solar panels is performed by dynamic modeling using the Vensim software (version 10.1.2). Finally, comparative results are presented between using and not using the investigated circuit and algorithm in the photovoltaic system, obtaining an improvement in the generation over a system without the use of these improvements, validating these results by implementing them in a test system, obtaining ranges higher than 10% of the initially generated power.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153700","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to implement an already developed algorithm to obtain the maximum power transfer of a solar generation field based on a dynamic approach. The study addresses the sizing of the load to be supplied, which is a residential building. On the other hand, it also considers the field sizing as a function of the load and the operating characteristics of the selected inverter. The irradiance data correspond to the hourly record of a station that is part of the network of meteorological stations in Quito. Quito was chosen as the location for this research due to the optimization algorithm’s practical application and the availability of experimental equipment. The demand sizing is based on the regulations of the distribution company with jurisdiction in the area, which makes it a suitable test bed for the algorithm. The optimization algorithm is developed using Python (version 3.9), and the analysis of the behavior of the solar panels is performed by dynamic modeling using the Vensim software (version 10.1.2). Finally, comparative results are presented between using and not using the investigated circuit and algorithm in the photovoltaic system, obtaining an improvement in the generation over a system without the use of these improvements, validating these results by implementing them in a test system, obtaining ranges higher than 10% of the initially generated power.
利用基于 PSO 的动态建模实现光伏微型发电系统的最大功率传输
本研究旨在采用一种已开发的算法,根据动态方法获得太阳能发电场的最大功率传输。该研究针对的是需要供电的负载(即住宅楼)的大小。另一方面,它还考虑了作为负载和所选逆变器运行特性函数的电场大小。辐照度数据来自基多气象站网络中的一个气象站的每小时记录。之所以选择基多作为研究地点,是因为优化算法的实际应用和实验设备的可用性。需求量的确定以该地区配电公司的规定为基础,这使其成为该算法的一个合适的测试平台。优化算法使用 Python(3.9 版)开发,太阳能电池板的行为分析通过 Vensim 软件(10.1.2 版)进行动态建模。最后,介绍了在光伏系统中使用和不使用所研究的电路和算法的比较结果,与不使用这些改进措施的系统相比,发电量有所提高,通过在测试系统中实施这些改进措施验证了这些结果,获得的发电量范围高于初始发电量的 10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信