Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat
{"title":"Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform","authors":"Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat","doi":"10.3390/fractalfract8080439","DOIUrl":null,"url":null,"abstract":"In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"28 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8080439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.