Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform

Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat
{"title":"Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform","authors":"Juan Luis González-Santander, Giorgio Spada, Francesco Mainardi, Alexander Apelblat","doi":"10.3390/fractalfract8080439","DOIUrl":null,"url":null,"abstract":"In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"28 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8080439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of the theory of linear viscoelasticity, we derive an analytical expression of the relaxation modulus in the Andrade model Gαt for the case of rational parameter α=m/n∈(0,1) in terms of Mittag–Leffler functions from its Laplace transform G˜αs. It turns out that the expression obtained can be rewritten in terms of Rabotnov functions. Moreover, for the original parameter α=1/3 in the Andrade model, we obtain an expression in terms of Miller-Ross functions. The asymptotic behaviours of Gαt for t→0+ and t→+∞ are also derived applying the Tauberian theorem. The analytical results obtained have been numerically checked by solving the Volterra integral equation satisfied by Gαt by using a successive approximation approach, as well as computing the inverse Laplace transform of G˜αs by using Talbot’s method.
利用拉普拉斯变换计算安德拉德模型中的松弛模量
在线性粘弹性理论的框架内,我们从安德拉德模型 Gαs 的拉普拉斯变换中推导出了有理参数 α=m/n∈(0,1)情况下安德拉德模型 Gαt 中松弛模量的分析表达式,该表达式用 Mittag-Leffler 函数表示。结果发现,所得到的表达式可以用拉博特诺夫函数重写。此外,对于安德拉德模型中的原始参数 α=1/3,我们可以得到米勒-罗斯函数的表达式。我们还应用陶伯定理推导出了 Gαt 在 t→0+ 和 t→+∞ 时的渐近行为。通过使用逐次逼近法求解 Gαt 满足的 Volterra 积分方程,以及使用塔尔博特方法计算 G˜αs 的反拉普拉斯变换,对得到的分析结果进行了数值检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信