{"title":"Leader-Following Connectivity Preservation and Collision Avoidance Control for Multiple Spacecraft with Bounded Actuation","authors":"Xianghong Xue, Xin Wang, Nannan Han","doi":"10.3390/aerospace11080612","DOIUrl":null,"url":null,"abstract":"This paper investigates the distributed formation control of a group of leader-following spacecraft with bounded actuation and limited communication ranges. In particular, connectivity-preserving and collision-avoidance controllers are proposed for the leader with constant or time-varying velocity, respectively. The communication graph between the spacecraft is modeled via a distance-induced proximity graph. By designing a virtual proxy for each spacecraft, the spacecraft–proxy couplings address the actuator saturation constraints. The inter-proxy dynamics incorporated with a bounded artificial potential function fulfill the coordination of all proxies. In addition, the bounded potential function can simultaneously tackle connectivity preservation and collision avoidance problems. The distributed formation controllers are proposed for multiple spacecraft with constant or time-varying velocities relative to the leader. A sliding mode control approach and the proxies’ dynamics are used in the design of a distributed cooperative controller for spacecraft to address the cooperative problem between the followers and the leader. Numerical simulations confirm the effectiveness of the anti-saturation distributed connectivity preservation controller.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the distributed formation control of a group of leader-following spacecraft with bounded actuation and limited communication ranges. In particular, connectivity-preserving and collision-avoidance controllers are proposed for the leader with constant or time-varying velocity, respectively. The communication graph between the spacecraft is modeled via a distance-induced proximity graph. By designing a virtual proxy for each spacecraft, the spacecraft–proxy couplings address the actuator saturation constraints. The inter-proxy dynamics incorporated with a bounded artificial potential function fulfill the coordination of all proxies. In addition, the bounded potential function can simultaneously tackle connectivity preservation and collision avoidance problems. The distributed formation controllers are proposed for multiple spacecraft with constant or time-varying velocities relative to the leader. A sliding mode control approach and the proxies’ dynamics are used in the design of a distributed cooperative controller for spacecraft to address the cooperative problem between the followers and the leader. Numerical simulations confirm the effectiveness of the anti-saturation distributed connectivity preservation controller.