{"title":"Optimization Design of SOFC-GT Hybrid Power System for Aviation Application","authors":"Zhaoyi Chen, Fengli Liang, Junkui Mao, Zaixing Wang, Xinyong Jiang","doi":"10.3390/en17153681","DOIUrl":null,"url":null,"abstract":"Developing high-efficiency and low-carbon propulsion systems is a pressing concern within the aviation field. This paper studies a hybrid power system that combines a solid oxide fuel cell and a gas turbine (SOFC-GT) with propane as fuel, which is easy to store and has a high energy density. The analysis focuses on key parameters such as compressor pressure ratio, fuel utilization rate, and fuel distribution. And a balance between system efficiency and the power-to-weight ratio has been achieved through multi-objective optimization. The conclusions indicate that system efficiency and system weight in the hybrid power system are optimized in opposite directions. Within the design parameters, the hybrid power system’s efficiency achieves 0.621, the specific fuel consumption is 115.2 g/kWh, and the power-to-weight ratio is 0.569 kW/kg. Further discussion on the application of this hybrid system in long-endurance unmanned aerial vehicles shows an efficiency of 0.651 during the cruise phase, indicating a promising application prospect of a propane-fueled SOFC-GT hybrid system in the aviation field.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"45 22","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17153681","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high-efficiency and low-carbon propulsion systems is a pressing concern within the aviation field. This paper studies a hybrid power system that combines a solid oxide fuel cell and a gas turbine (SOFC-GT) with propane as fuel, which is easy to store and has a high energy density. The analysis focuses on key parameters such as compressor pressure ratio, fuel utilization rate, and fuel distribution. And a balance between system efficiency and the power-to-weight ratio has been achieved through multi-objective optimization. The conclusions indicate that system efficiency and system weight in the hybrid power system are optimized in opposite directions. Within the design parameters, the hybrid power system’s efficiency achieves 0.621, the specific fuel consumption is 115.2 g/kWh, and the power-to-weight ratio is 0.569 kW/kg. Further discussion on the application of this hybrid system in long-endurance unmanned aerial vehicles shows an efficiency of 0.651 during the cruise phase, indicating a promising application prospect of a propane-fueled SOFC-GT hybrid system in the aviation field.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico