Verification of Taylor's theorem

Qiyu Li
{"title":"Verification of Taylor's theorem","authors":"Qiyu Li","doi":"10.54254/2753-8818/43/20241022","DOIUrl":null,"url":null,"abstract":"Multivariate function calculus is an important part of mathematical analysis courses, and most conclusions can be found and generalized in univariate calculus. However, the biggest difficulty in teaching multivariate calculus lies in its abstraction, such as Taylors theorem, multiple integral regions drawing, and integral variable transformation. At the same time, ordinary differential equations are also one of the basic courses of the profession, and dynamic systems based on ordinary differential equations have extensive applications in mathematical models of continuity problems and optimal control problems. Software such as Mathematica, Python, Matlab, etc. can solve similar problems. Therefore, this article will use the visualization and computational capabilities of Mathematica to validate important definitions and conclusions in multivariate calculus, and compare the differences among the three software in solving approximate numerical solutions of dynamic systems of ordinary differential equations from different perspectives.","PeriodicalId":341023,"journal":{"name":"Theoretical and Natural Science","volume":"48 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2753-8818/43/20241022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate function calculus is an important part of mathematical analysis courses, and most conclusions can be found and generalized in univariate calculus. However, the biggest difficulty in teaching multivariate calculus lies in its abstraction, such as Taylors theorem, multiple integral regions drawing, and integral variable transformation. At the same time, ordinary differential equations are also one of the basic courses of the profession, and dynamic systems based on ordinary differential equations have extensive applications in mathematical models of continuity problems and optimal control problems. Software such as Mathematica, Python, Matlab, etc. can solve similar problems. Therefore, this article will use the visualization and computational capabilities of Mathematica to validate important definitions and conclusions in multivariate calculus, and compare the differences among the three software in solving approximate numerical solutions of dynamic systems of ordinary differential equations from different perspectives.
泰勒定理的验证
多元函数微积分是数学分析课程的重要组成部分,大多数结论都可以在单变量微积分中找到并加以推广。但多元微积分教学的最大难点在于其抽象性,如泰勒定理、多元积分区域画法、积分变量变换等。同时,常微分方程也是专业基础课程之一,基于常微分方程的动态系统在连续性问题数学模型和最优控制问题中有着广泛的应用。Mathematica、Python、Matlab 等软件可以解决类似问题。因此,本文将利用 Mathematica 的可视化和计算功能来验证多元微积分中的重要定义和结论,并从不同角度比较三种软件在求解常微分方程动态系统近似数值解时的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信