{"title":"TRGCN: A Prediction Model for Information Diffusion Based on Transformer and Relational Graph Convolutional Network","authors":"Jinghua Zhao, Xiting Lyu, Haiying Rong, Jiale Zhao","doi":"10.1145/3672074","DOIUrl":null,"url":null,"abstract":"In order to capture and integrate structural features and temporal features contained in social graph and diffusion cascade more effectively, an information diffusion prediction model based on Transformer and Relational Graph Convolutional Network (TRGCN) is proposed. Firstly, a dynamic heterogeneous graph composed of the social network graph and the diffusion cascade graph was constructed, and it was input into the Relational Graph Convolutional Network (RGCN) to extract the structural features of each node. Secondly, the time embedding of each node was re-encoded using Bi-directional Long Short-Term Memory (Bi-LSTM). The time decay function was introduced to give different weights to nodes at different time positions, so as to obtain the temporal features of nodes. Finally, structural features and temporal features were input into Transformer and then merged. The spatial-temporal features are obtained for information diffusion prediction. The experimental results on three real data sets of Twitter, Douban and Memetracker show that compared with the optimal model in the comparison experiment, the TRGCN model has an average increase of 4.16% in Hits@100 metric and 13.26% in map@100 metric. The validity and rationality of the model are proved.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"32 13","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672074","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to capture and integrate structural features and temporal features contained in social graph and diffusion cascade more effectively, an information diffusion prediction model based on Transformer and Relational Graph Convolutional Network (TRGCN) is proposed. Firstly, a dynamic heterogeneous graph composed of the social network graph and the diffusion cascade graph was constructed, and it was input into the Relational Graph Convolutional Network (RGCN) to extract the structural features of each node. Secondly, the time embedding of each node was re-encoded using Bi-directional Long Short-Term Memory (Bi-LSTM). The time decay function was introduced to give different weights to nodes at different time positions, so as to obtain the temporal features of nodes. Finally, structural features and temporal features were input into Transformer and then merged. The spatial-temporal features are obtained for information diffusion prediction. The experimental results on three real data sets of Twitter, Douban and Memetracker show that compared with the optimal model in the comparison experiment, the TRGCN model has an average increase of 4.16% in Hits@100 metric and 13.26% in map@100 metric. The validity and rationality of the model are proved.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.