{"title":"Exploring the Potential of Using Waste Clay Brick Powder in Geopolymer Applications: A Comprehensive Review","authors":"Shaila Sharmin, Wahidul K. Biswas, P. Sarker","doi":"10.3390/buildings14082317","DOIUrl":null,"url":null,"abstract":"The application of geopolymers has recently been given significant attention to address climate change and the growing scarcity of construction materials in the 21st century. Researchers have utilized industrial waste or supplementary cementitious materials containing high levels of silica and alumina as precursors along with different alkaline activators. Furthermore, the technical challenges associated with waste brick management or recycling include both land use changes and financial implications. The existence of amorphous aluminosilicates in waste clay bricks, which can be used as geopolymer binders, has drawn attention recently. This paper reviews the recent advancements of the integration of clay brick wastes in geopolymer applications, individually as well as its use with other alternative materials. Prior studies suggest that waste clay bricks can effectively serve as the primary source material in geopolymer applications. This review covers various aspects, including the assessment of fresh, mechanical, microstructure, and durability-related properties. It specifically focused on enhancing these properties of waste clay bricks through mechanical and thermal treatments, through varying curing conditions, utilizing different types of alkaline activators, and considering their properties and corresponding ratios in the development of geopolymer products using waste brick powder. Furthermore, this paper portrays a critical review of the sustainability implications of the utilization of clay brick waste in geopolymer applications. Conclusively, this review provided the lessons learnt, research gaps, and the future direction for investigation into the feasibility of geopolymers derived from waste clay brick powder.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14082317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of geopolymers has recently been given significant attention to address climate change and the growing scarcity of construction materials in the 21st century. Researchers have utilized industrial waste or supplementary cementitious materials containing high levels of silica and alumina as precursors along with different alkaline activators. Furthermore, the technical challenges associated with waste brick management or recycling include both land use changes and financial implications. The existence of amorphous aluminosilicates in waste clay bricks, which can be used as geopolymer binders, has drawn attention recently. This paper reviews the recent advancements of the integration of clay brick wastes in geopolymer applications, individually as well as its use with other alternative materials. Prior studies suggest that waste clay bricks can effectively serve as the primary source material in geopolymer applications. This review covers various aspects, including the assessment of fresh, mechanical, microstructure, and durability-related properties. It specifically focused on enhancing these properties of waste clay bricks through mechanical and thermal treatments, through varying curing conditions, utilizing different types of alkaline activators, and considering their properties and corresponding ratios in the development of geopolymer products using waste brick powder. Furthermore, this paper portrays a critical review of the sustainability implications of the utilization of clay brick waste in geopolymer applications. Conclusively, this review provided the lessons learnt, research gaps, and the future direction for investigation into the feasibility of geopolymers derived from waste clay brick powder.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates