Thiago Dias dos Santos, Alexandre Olender, Daiane I. Dolci, Bruno Souza Carmo
{"title":"Velocity model-based adapted meshes using optimal transport","authors":"Thiago Dias dos Santos, Alexandre Olender, Daiane I. Dolci, Bruno Souza Carmo","doi":"10.1190/geo2023-0581.1","DOIUrl":null,"url":null,"abstract":"In geophysical numerical models using the finite-element method or its variant, the spectral-element method, to solve seismic wave equations, a mesh is employed to discretize the domain. Generating or adapting a mesh to complex geological properties is a challenging task. To tackle this challenge, we develop an r-adaptivity method to generate or adapt a two-dimensional mesh to a seismic velocity field. Our scheme relies on the optimal transport theory to perform vertices relocation, which generates good-shaped meshes and prevents tangled elements. The mesh adaptation can delineate different regions of interest, like sharp interfaces, salt bodies, and discontinuities. The algorithm has a few user-defined parameters that control the mesh density. With typical seismic velocity examples (e.g., Camembert, SEAM Phase, Marmousi-2), mesh adaptation capability is illustrated within meshes with triangular and quadrilateral elements, commonly employed in seismic codes. Besides its potential use in mesh generation, the method developed can be embedded in seismic inversion workflows like multiscale full waveform inversion to adapt the mesh to the field being inverted without incurring the I/O cost of re-meshing and load rebalancing in parallel computations. The method can be extended to three-dimensional meshes.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"9 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0581.1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In geophysical numerical models using the finite-element method or its variant, the spectral-element method, to solve seismic wave equations, a mesh is employed to discretize the domain. Generating or adapting a mesh to complex geological properties is a challenging task. To tackle this challenge, we develop an r-adaptivity method to generate or adapt a two-dimensional mesh to a seismic velocity field. Our scheme relies on the optimal transport theory to perform vertices relocation, which generates good-shaped meshes and prevents tangled elements. The mesh adaptation can delineate different regions of interest, like sharp interfaces, salt bodies, and discontinuities. The algorithm has a few user-defined parameters that control the mesh density. With typical seismic velocity examples (e.g., Camembert, SEAM Phase, Marmousi-2), mesh adaptation capability is illustrated within meshes with triangular and quadrilateral elements, commonly employed in seismic codes. Besides its potential use in mesh generation, the method developed can be embedded in seismic inversion workflows like multiscale full waveform inversion to adapt the mesh to the field being inverted without incurring the I/O cost of re-meshing and load rebalancing in parallel computations. The method can be extended to three-dimensional meshes.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico