E. Doncheva, Nikola Avramov, Aleksandra Krstevska, Martin Petreski, Jelena Djokikj, Marjan Djidrov
{"title":"Sustainability and environmental life cycle analysis of welding processes","authors":"E. Doncheva, Nikola Avramov, Aleksandra Krstevska, Martin Petreski, Jelena Djokikj, Marjan Djidrov","doi":"10.1108/ijsi-02-2024-0024","DOIUrl":null,"url":null,"abstract":"PurposeWelding is a widely used manufacturing process in many industries. The process consumes a lot of energy and resources, pollutes the environment, and emits gases and fumes into the atmosphere that are dangerous to human health. There are various welding processes, and the suitable welding process is usually chosen based on cost, material, and conditions. Subjectivity is the most significant impediment to selecting an optimal process. As a result, it is critical to develop the appropriate set of criteria, use the best tool and methodology, and collect sufficient data. This study examines the sustainability of welding processes and their environmental impact.Design/methodology/approachThe welding process’s sustainability was examined and discussed in general, considering the technological specifics of each welding process, physical performance, and environmental, economic, and social effects. The study investigates the environmental impact of MMAW, GMAW, and GTAW/GMAW processes through experimental work and LCA methodology.FindingsMMAW is the most environmentally harmful technology, whereas GMAW has the least impact. The GTAW/GMAW process outperformed the other processes in terms of yield stress, but the analyses revealed that it had a greater environmental impact than GMAW.Originality/valueThe study provides an environmental impact summary and demonstrates the effects of welding parameters and processes. This gives users an understanding of choosing the best welding technique or making the process more environmentally friendly. These recommendations help policymakers identify hot spots and implement the right plans to achieve more sustainable manufacturing.","PeriodicalId":502514,"journal":{"name":"International Journal of Structural Integrity","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijsi-02-2024-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeWelding is a widely used manufacturing process in many industries. The process consumes a lot of energy and resources, pollutes the environment, and emits gases and fumes into the atmosphere that are dangerous to human health. There are various welding processes, and the suitable welding process is usually chosen based on cost, material, and conditions. Subjectivity is the most significant impediment to selecting an optimal process. As a result, it is critical to develop the appropriate set of criteria, use the best tool and methodology, and collect sufficient data. This study examines the sustainability of welding processes and their environmental impact.Design/methodology/approachThe welding process’s sustainability was examined and discussed in general, considering the technological specifics of each welding process, physical performance, and environmental, economic, and social effects. The study investigates the environmental impact of MMAW, GMAW, and GTAW/GMAW processes through experimental work and LCA methodology.FindingsMMAW is the most environmentally harmful technology, whereas GMAW has the least impact. The GTAW/GMAW process outperformed the other processes in terms of yield stress, but the analyses revealed that it had a greater environmental impact than GMAW.Originality/valueThe study provides an environmental impact summary and demonstrates the effects of welding parameters and processes. This gives users an understanding of choosing the best welding technique or making the process more environmentally friendly. These recommendations help policymakers identify hot spots and implement the right plans to achieve more sustainable manufacturing.