Dan Liang, Rui Yan, Xin Long, Dongmei Ji, Bing Song, Mengyao Wang, Fan Zhang, Xin Cheng, Fengyuan Sun, Ran Zhu, Xinling Hou, Tianjuan Wang, Weiwei Zou, Ying Zhang, Zhixin Pu, Jing Zhang, Zhiguo Zhang, Yajing Liu, Yuqiong Hu, Xiaojin He, Yunxia Cao, Fan Guo
{"title":"Distinct dynamics of parental 5-hydroxymethylcytosine during human preimplantation development regulate early lineage gene expression","authors":"Dan Liang, Rui Yan, Xin Long, Dongmei Ji, Bing Song, Mengyao Wang, Fan Zhang, Xin Cheng, Fengyuan Sun, Ran Zhu, Xinling Hou, Tianjuan Wang, Weiwei Zou, Ying Zhang, Zhixin Pu, Jing Zhang, Zhiguo Zhang, Yajing Liu, Yuqiong Hu, Xiaojin He, Yunxia Cao, Fan Guo","doi":"10.1038/s41556-024-01475-y","DOIUrl":null,"url":null,"abstract":"The conversion of DNA 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET enzymes represents a significant epigenetic modification, yet its role in early human embryos remains largely unknown. Here we showed that the early human embryo inherited a significant amount of 5hmCs from an oocyte, which unexpectedly underwent de novo hydroxymethylation during its growth. Furthermore, the generation of 5hmC in the paternal genome after fertilization roughly followed the maternal pattern, which was linked to DNA methylation dynamics and regions of sustained methylation. The 5hmCs persisted until the eight-cell stage and exhibited high enrichment at OTX2 binding sites, whereas knockdown of OTX2 in human embryos compromised the expression of early lineage genes. Specifically, the depletion of 5hmC affected the activation of embryonic genes, which was further evaluated by ectopically expressing mouse Tet3 in human early embryos. These findings revealed distinct dynamics of 5hmC and unravelled its multifaceted functions in early human embryonic development. Liang, Yan, Long, Ji et al. find that the origin and dynamics of 5-hydroxymethylcytosine (5hmC) during early development are not conserved between humans and mice and that 5hmC contributes to the activation of human embryonic genes.","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"26 9","pages":"1458-1469"},"PeriodicalIF":17.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41556-024-01475-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41556-024-01475-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of DNA 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET enzymes represents a significant epigenetic modification, yet its role in early human embryos remains largely unknown. Here we showed that the early human embryo inherited a significant amount of 5hmCs from an oocyte, which unexpectedly underwent de novo hydroxymethylation during its growth. Furthermore, the generation of 5hmC in the paternal genome after fertilization roughly followed the maternal pattern, which was linked to DNA methylation dynamics and regions of sustained methylation. The 5hmCs persisted until the eight-cell stage and exhibited high enrichment at OTX2 binding sites, whereas knockdown of OTX2 in human embryos compromised the expression of early lineage genes. Specifically, the depletion of 5hmC affected the activation of embryonic genes, which was further evaluated by ectopically expressing mouse Tet3 in human early embryos. These findings revealed distinct dynamics of 5hmC and unravelled its multifaceted functions in early human embryonic development. Liang, Yan, Long, Ji et al. find that the origin and dynamics of 5-hydroxymethylcytosine (5hmC) during early development are not conserved between humans and mice and that 5hmC contributes to the activation of human embryonic genes.
期刊介绍:
Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to:
-Autophagy
-Cancer biology
-Cell adhesion and migration
-Cell cycle and growth
-Cell death
-Chromatin and epigenetics
-Cytoskeletal dynamics
-Developmental biology
-DNA replication and repair
-Mechanisms of human disease
-Mechanobiology
-Membrane traffic and dynamics
-Metabolism
-Nuclear organization and dynamics
-Organelle biology
-Proteolysis and quality control
-RNA biology
-Signal transduction
-Stem cell biology