Magnetic Cell Targeting for Cardiovascular Tissue Engineering.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Akankshya Shradhanjali, Jayne T Wolfe, Brandon J Tefft
{"title":"Magnetic Cell Targeting for Cardiovascular Tissue Engineering.","authors":"Akankshya Shradhanjali, Jayne T Wolfe, Brandon J Tefft","doi":"10.1089/ten.TEB.2024.0103","DOIUrl":null,"url":null,"abstract":"<p><p>There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites. It is regarded as a relatively straightforward and safe approach for a wide range of therapeutic applications. This review discusses the latest advancements and approaches in magnetic cell targeting using endocytosed and surface-bound magnetic nanoparticles as well as <i>in vivo</i> tracking using magnetic resonance imaging (MRI). The most common form of magnetic nanoparticles is superparamagnetic iron oxide nanoparticles (SPION). The biodegradable and biocompatible properties of these magnetically responsive particles and capacity for rapid endocytosis into cells make them a breakthrough in targeted therapy. This review further discusses specific applications of magnetic targeting approaches in cardiovascular tissue engineering including myocardial regeneration, therapeutic angiogenesis, and endothelialization of implantable cardiovascular devices.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2024.0103","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

There is a critical need for novel approaches to translate cell therapy and regenerative medicine to clinical practice. Magnetic cell targeting with site specificity has started to open avenues in these fields as a potential therapeutic platform. Magnetic targeting is gaining popularity in the field of biomedicine due to its ability to concentrate and retain at a target site while minimizing deleterious effects at off-target sites. It is regarded as a relatively straightforward and safe approach for a wide range of therapeutic applications. This review discusses the latest advancements and approaches in magnetic cell targeting using endocytosed and surface-bound magnetic nanoparticles as well as in vivo tracking using magnetic resonance imaging (MRI). The most common form of magnetic nanoparticles is superparamagnetic iron oxide nanoparticles (SPION). The biodegradable and biocompatible properties of these magnetically responsive particles and capacity for rapid endocytosis into cells make them a breakthrough in targeted therapy. This review further discusses specific applications of magnetic targeting approaches in cardiovascular tissue engineering including myocardial regeneration, therapeutic angiogenesis, and endothelialization of implantable cardiovascular devices.

用于心血管组织工程的磁性细胞靶向。
将细胞疗法和再生医学转化为临床实践亟需新方法。作为一种潜在的治疗平台,具有靶点特异性的磁性细胞靶向技术已开始在这些领域开辟道路。磁性靶向技术在生物医学领域越来越受欢迎,因为它能够集中并保留在靶点,同时最大限度地减少对非靶点的有害影响。在广泛的治疗应用中,它被认为是一种相对直接和安全的方法。本综述将讨论利用内吞和抗体结合的磁性纳米粒子进行磁性细胞靶向以及利用核磁共振成像进行体内跟踪的最新进展和方法。最常见的磁性粒子形式是超顺磁性氧化铁纳米粒子(SPION)。这些磁响应粒子具有生物可降解性和生物相容性,并能快速内吞进入细胞,这使它们在靶向治疗方面取得了突破性进展。本综述进一步讨论了磁性靶向方法的具体应用,包括心肌再生、植入式心血管设备的内皮化和其他再生医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信