3D Culture Analysis of Cancer Cell Adherence to Ex Vivo Lung Microexplants.

IF 2.7 4区 医学 Q3 CELL & TISSUE ENGINEERING
Nickolas G Diodati, Zadia E Dupee, Felipe T Lima, Jack Famiglietti, Ryan A Smolchek, Ganlin Qu, Yana Goddard, Duy T Nguyen, W Gregory Sawyer, Edward A Phelps, Borna Mehrad, Matthew A Schaller
{"title":"3D Culture Analysis of Cancer Cell Adherence to <i>Ex Vivo</i> Lung Microexplants.","authors":"Nickolas G Diodati, Zadia E Dupee, Felipe T Lima, Jack Famiglietti, Ryan A Smolchek, Ganlin Qu, Yana Goddard, Duy T Nguyen, W Gregory Sawyer, Edward A Phelps, Borna Mehrad, Matthew A Schaller","doi":"10.1089/ten.TEC.2024.0146","DOIUrl":null,"url":null,"abstract":"<p><p><i>Ex vivo</i> 3D culture of human tissue explants addresses many limitations of traditional monolayer cell culture techniques, namely the lack of cellular heterogeneity and absence of 3D intercellular spatial relationships, but presents challenges with regard to repeatability owing to the difficulty of acquiring multiple tissue samples from the same donor. In this study, we used a cryopreserved bank of human lung microexplants, ∼1 mm<sup>3</sup> fragments of peripheral lung from donors undergoing lung resection surgery, and a liquid-like solid 3D culture matrix to describe a method for the analysis of non-small-cell lung cancer adhesion to human lung tissue. H226 (squamous cell carcinoma), H441 (lung adenocarcinoma), and H460 (large cell carcinoma) cell lines were cocultured with lung microexplants. Confocal fluorescence microscopy was used to visualize the adherence of each cell line to lung microexplants. Adherent cancer cells were quantified following filtration of nonadherent cells, digestion of cultured microexplants, and flow cytometry. This method was used to evaluate the role of integrins in cancer cell adherence. A statistically significant decrease in the adherence of H460 cells to lung microexplants was observed when anti-integrins were administered to H460 cells before coculture with lung microexplants.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"343-352"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2024.0146","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Ex vivo 3D culture of human tissue explants addresses many limitations of traditional monolayer cell culture techniques, namely the lack of cellular heterogeneity and absence of 3D intercellular spatial relationships, but presents challenges with regard to repeatability owing to the difficulty of acquiring multiple tissue samples from the same donor. In this study, we used a cryopreserved bank of human lung microexplants, ∼1 mm3 fragments of peripheral lung from donors undergoing lung resection surgery, and a liquid-like solid 3D culture matrix to describe a method for the analysis of non-small-cell lung cancer adhesion to human lung tissue. H226 (squamous cell carcinoma), H441 (lung adenocarcinoma), and H460 (large cell carcinoma) cell lines were cocultured with lung microexplants. Confocal fluorescence microscopy was used to visualize the adherence of each cell line to lung microexplants. Adherent cancer cells were quantified following filtration of nonadherent cells, digestion of cultured microexplants, and flow cytometry. This method was used to evaluate the role of integrins in cancer cell adherence. A statistically significant decrease in the adherence of H460 cells to lung microexplants was observed when anti-integrins were administered to H460 cells before coculture with lung microexplants.

三维培养分析癌细胞对体内肺显微移植体的粘附性
人体组织外植体的体外三维培养解决了传统单层细胞培养技术的许多局限性,即缺乏细胞异质性和三维细胞间空间关系,但由于难以从同一供体获取多个组织样本,因此在可重复性方面存在挑战。在这项研究中,我们利用低温保存的人类肺部显微移植体库、肺部切除手术供体的 ~1 mm3 周围肺部片段以及类液固态(LLS)三维培养基质,描述了一种分析非小细胞肺癌(NSCLC)与人类肺部组织粘附的方法。H226(鳞状细胞癌)、H441(肺腺癌)和H460(大细胞癌)细胞系与肺部微表达细胞共同培养。共聚焦荧光显微镜用于观察每种细胞系与肺微移植体的粘附情况。在过滤非粘附细胞、消化培养的微胚胎和流式细胞术之后,对粘附的癌细胞进行量化。这种方法用于评估整合素在癌细胞粘附中的作用。在H460细胞与肺部微表达细胞共培养之前给H460细胞注射抗整合素,可以观察到H460细胞与肺部微表达细胞的粘附性有明显的统计学下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue engineering. Part C, Methods
Tissue engineering. Part C, Methods Medicine-Medicine (miscellaneous)
CiteScore
5.10
自引率
3.30%
发文量
136
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues. Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信