Pengyun Luo, Xinxiu Zuo, Yufen Bu, Hongping Qian, Changwen Xu, Shihui Niu, Jinxing Lin, Yaning Cui
{"title":"The cytoskeleton controls the dynamics of plasma membrane proteins and facilitates their endocytosis in plants.","authors":"Pengyun Luo, Xinxiu Zuo, Yufen Bu, Hongping Qian, Changwen Xu, Shihui Niu, Jinxing Lin, Yaning Cui","doi":"10.1093/plphys/kiae403","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma membranes (PMs) are highly dynamic structures where lipids and proteins can theoretically diffuse freely. However, reports indicate that PM proteins do not freely diffuse within their planes but are constrained by cytoskeleton networks, though the mechanisms for how the cytoskeleton restricts lateral diffusion of plant PM proteins are unclear. Through single-molecule tracking, we investigated the dynamics of 6 Arabidopsis (Arabidopsis thaliana) PM proteins with diverse structures and found distinctions in sizes and dynamics among these proteins. Moreover, we showed that the cytoskeleton, particularly microtubules, limits the diffusion of PM proteins, including transmembrane and membrane-anchoring proteins. Interestingly, the microfilament skeleton regulates intracellular transport of endocytic cargo. Therefore, these findings indicate that the cytoskeleton controls signal transduction by limiting diffusion of PM proteins in specific membrane compartments and participating in transport of internalized cargo vesicles, thus actively regulating plant signal transduction.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae403","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma membranes (PMs) are highly dynamic structures where lipids and proteins can theoretically diffuse freely. However, reports indicate that PM proteins do not freely diffuse within their planes but are constrained by cytoskeleton networks, though the mechanisms for how the cytoskeleton restricts lateral diffusion of plant PM proteins are unclear. Through single-molecule tracking, we investigated the dynamics of 6 Arabidopsis (Arabidopsis thaliana) PM proteins with diverse structures and found distinctions in sizes and dynamics among these proteins. Moreover, we showed that the cytoskeleton, particularly microtubules, limits the diffusion of PM proteins, including transmembrane and membrane-anchoring proteins. Interestingly, the microfilament skeleton regulates intracellular transport of endocytic cargo. Therefore, these findings indicate that the cytoskeleton controls signal transduction by limiting diffusion of PM proteins in specific membrane compartments and participating in transport of internalized cargo vesicles, thus actively regulating plant signal transduction.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.