{"title":"The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort.","authors":"Martijn Froeling, Linda Heskamp","doi":"10.1002/nbm.5217","DOIUrl":null,"url":null,"abstract":"<p><p>Spectroscopic imaging, rooted in Dixon's two-echo spin sequence to distinguish water and fat, has evolved significantly in acquisition and processing. Yet precise fat quantification remains a persistent challenge in ongoing research. With adequate phase characterization and correction, the fat composition models will impact measurements of fatty tissue. However, the effect of the used fat model in low-fat regions such as healthy muscle is unknown. In this study, we investigate the effect of assumed fat composition, in terms of chain length and double bond count, on fat fraction quantification in healthy muscle, while addressing phase and relaxometry confounders. For this purpose, we acquired bilateral thigh datasets from 38 healthy volunteers. Fat fractions were estimated using the IDEAL algorithm employing three different fat models fitted with and without the initial phase constrained. After data processing and model fitting, we used a convolutional neural net to automatically segment all thigh muscles and subcutaneous fat to evaluate the fitted parameters. The fat composition was compared with those reported in the literature. Overall, all the observed estimated fat composition values fall within the range of previously reported fatty acid composition based on gas chromatography measurements. All methods and models revealed different estimates of the muscle fat fractions in various evaluated muscle groups. Lateral differences changed from 0.5% to 5.3% in the hamstring muscle groups depending on the chosen method. The lowest observed left-right differences in each muscle group were all for the fat model estimating the number of double bonds with the initial phase unconstrained. With this model, the left-right differences were 0.64% ± 0.31%, 0.50% ± 0.27%, and 0.50% ± 0.40% for the quadriceps, hamstrings, and adductors muscle groups, respectively. Our findings suggest that a fat model estimating double bond numbers while allowing separate phases for each chemical species, given some assumptions, yields the best fat fraction estimate for our dataset.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5217"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5217","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spectroscopic imaging, rooted in Dixon's two-echo spin sequence to distinguish water and fat, has evolved significantly in acquisition and processing. Yet precise fat quantification remains a persistent challenge in ongoing research. With adequate phase characterization and correction, the fat composition models will impact measurements of fatty tissue. However, the effect of the used fat model in low-fat regions such as healthy muscle is unknown. In this study, we investigate the effect of assumed fat composition, in terms of chain length and double bond count, on fat fraction quantification in healthy muscle, while addressing phase and relaxometry confounders. For this purpose, we acquired bilateral thigh datasets from 38 healthy volunteers. Fat fractions were estimated using the IDEAL algorithm employing three different fat models fitted with and without the initial phase constrained. After data processing and model fitting, we used a convolutional neural net to automatically segment all thigh muscles and subcutaneous fat to evaluate the fitted parameters. The fat composition was compared with those reported in the literature. Overall, all the observed estimated fat composition values fall within the range of previously reported fatty acid composition based on gas chromatography measurements. All methods and models revealed different estimates of the muscle fat fractions in various evaluated muscle groups. Lateral differences changed from 0.5% to 5.3% in the hamstring muscle groups depending on the chosen method. The lowest observed left-right differences in each muscle group were all for the fat model estimating the number of double bonds with the initial phase unconstrained. With this model, the left-right differences were 0.64% ± 0.31%, 0.50% ± 0.27%, and 0.50% ± 0.40% for the quadriceps, hamstrings, and adductors muscle groups, respectively. Our findings suggest that a fat model estimating double bond numbers while allowing separate phases for each chemical species, given some assumptions, yields the best fat fraction estimate for our dataset.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.