{"title":"Reorganization of brain connectivity across the spectrum of clinical cognitive decline.","authors":"Demet Yüksel Dal, Zerrin Yıldırım, Hakan Gürvit, Alkan Kabakçıoğlu, Burak Acar","doi":"10.1007/s10072-024-07688-1","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical cognitive decline, leading to Alzheimer's Disease Dementia (ADD), has long been interpreted as a disconnection syndrome, hindering the information flow capacity of the brain, hence leading to the well-known symptoms of ADD. The structural and functional brain connectome analyses play a central role in studies of brain from this perspective. However, most current research implicitly assumes that the changes accompanying the progression of cognitive decline are monotonous in time, whether measured across the entire brain or in fixed cortical regions. We investigate the structural and functional connectivity-wise reorganization of the brain without such assumptions across the entire spectrum. We utilize nodal assortativity as a local topological measure of connectivity and follow a data-centric approach to identify and verify relevant local regions, as well as to understand the nature of underlying reorganization. The analysis of our preliminary experimental data points to statistically significant, hyper and hypo-assortativity regions that depend on the disease's stage, and differ for structural and functional connectomes. Our results suggest a new perspective into the dynamic, potentially a mix of degenerative and compensatory, topological alterations that occur in the brain as cognitive decline progresses.</p>","PeriodicalId":19191,"journal":{"name":"Neurological Sciences","volume":" ","pages":"5719-5730"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10072-024-07688-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical cognitive decline, leading to Alzheimer's Disease Dementia (ADD), has long been interpreted as a disconnection syndrome, hindering the information flow capacity of the brain, hence leading to the well-known symptoms of ADD. The structural and functional brain connectome analyses play a central role in studies of brain from this perspective. However, most current research implicitly assumes that the changes accompanying the progression of cognitive decline are monotonous in time, whether measured across the entire brain or in fixed cortical regions. We investigate the structural and functional connectivity-wise reorganization of the brain without such assumptions across the entire spectrum. We utilize nodal assortativity as a local topological measure of connectivity and follow a data-centric approach to identify and verify relevant local regions, as well as to understand the nature of underlying reorganization. The analysis of our preliminary experimental data points to statistically significant, hyper and hypo-assortativity regions that depend on the disease's stage, and differ for structural and functional connectomes. Our results suggest a new perspective into the dynamic, potentially a mix of degenerative and compensatory, topological alterations that occur in the brain as cognitive decline progresses.
期刊介绍:
Neurological Sciences is intended to provide a medium for the communication of results and ideas in the field of neuroscience. The journal welcomes contributions in both the basic and clinical aspects of the neurosciences. The official language of the journal is English. Reports are published in the form of original articles, short communications, editorials, reviews and letters to the editor. Original articles present the results of experimental or clinical studies in the neurosciences, while short communications are succinct reports permitting the rapid publication of novel results. Original contributions may be submitted for the special sections History of Neurology, Health Care and Neurological Digressions - a forum for cultural topics related to the neurosciences. The journal also publishes correspondence book reviews, meeting reports and announcements.