Phase shift of coherent magnetization dynamics after ultrafast demagnetization in strongly quenched nickel thin films.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Akira Lentfert, Anulekha De, Laura Scheuer, Benjamin Stadtmüller, Georg von Freymann, Martin Aeschlimann, Philipp Pirro
{"title":"Phase shift of coherent magnetization dynamics after ultrafast demagnetization in strongly quenched nickel thin films.","authors":"Akira Lentfert, Anulekha De, Laura Scheuer, Benjamin Stadtmüller, Georg von Freymann, Martin Aeschlimann, Philipp Pirro","doi":"10.1088/1361-648X/ad68b2","DOIUrl":null,"url":null,"abstract":"<p><p>The remagnetization process after ultrafast demagnetization can be described by relaxation mechanisms between the spin, electron, and lattice reservoirs. Thereby, collective spin excitations in form of spin waves and their angular momentum transfer play an important role on the longer timescales. In this work, we address the question whether the magnitude of demagnetization-the so-called quenching-affects the coherency and the phase of the excited spin waves. We present a study of coherent magnetization dynamics in thin nickel films after ultrafast demagnetization using the all-optical, time-resolved magneto-optical Kerr-effect technique. The largest coherent precession amplitude was observed for strongly quenched systems, indicating a well-defined precession phase for all pump pulses at a demagnetization of up to 90% in this system. Moreover, the phase of the excited spin-waves in Ni increases with the pump fluence, indicating a delayed start of the precession during the remagnetization. We compare these findings to recent studies in Ni<sub>80</sub>Fe<sub>20</sub>(permalloy), to evaluate the influence of the magneto-elastic coupling and non-linear spin-wave dynamics on the magnetization dynamics.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad68b2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The remagnetization process after ultrafast demagnetization can be described by relaxation mechanisms between the spin, electron, and lattice reservoirs. Thereby, collective spin excitations in form of spin waves and their angular momentum transfer play an important role on the longer timescales. In this work, we address the question whether the magnitude of demagnetization-the so-called quenching-affects the coherency and the phase of the excited spin waves. We present a study of coherent magnetization dynamics in thin nickel films after ultrafast demagnetization using the all-optical, time-resolved magneto-optical Kerr-effect technique. The largest coherent precession amplitude was observed for strongly quenched systems, indicating a well-defined precession phase for all pump pulses at a demagnetization of up to 90% in this system. Moreover, the phase of the excited spin-waves in Ni increases with the pump fluence, indicating a delayed start of the precession during the remagnetization. We compare these findings to recent studies in Ni80Fe20(permalloy), to evaluate the influence of the magneto-elastic coupling and non-linear spin-wave dynamics on the magnetization dynamics.

强淬火镍薄膜超快退磁后相干磁化动力学的相移。
超快消磁后的再磁化过程可以用自旋、电子和晶格储层之间的弛豫机制来描述。因此,自旋波形式的集体自旋激发及其角动量传递在较长的时间尺度上发挥着重要作用。在这项研究中,我们探讨了去磁的程度--即所谓的淬火--是否会影响激发自旋波的相干性和相位。我们利用全光学、时间分辨磁光克尔效应(tr-MOKE)技术,对超快退磁后镍薄膜中的相干磁化动力学进行了研究。在强淬火系统中观察到了最大的相干前驱幅值,这表明在该系统中,当去磁率高达 90% 时,所有泵脉冲都具有明确的前驱相位。此外,镍中激发的自旋波的相位随泵浦通量的增加而增加,这表明在再磁化过程中前驱的开始时间被延迟了。我们将这些发现与最近在 Ni80Fe20(高合金)中进行的研究进行比较,以评估磁弹性耦合和非线性自旋波动力学对磁化动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信