The Role of Methylation in Ferroptosis.

IF 2.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Yushu Xie, Jie Xie, Liang Li
{"title":"The Role of Methylation in Ferroptosis.","authors":"Yushu Xie, Jie Xie, Liang Li","doi":"10.1007/s12265-024-10539-1","DOIUrl":null,"url":null,"abstract":"<p><p>Methylation modification is a crucial epigenetic alteration encompassing RNA methylation, DNA methylation, and histone methylation. Ferroptosis represents a newly discovered form of programmed cell death (PCD) in 2012, which is characterized by iron-dependent lipid peroxidation. The comprehensive investigation of ferroptosis is therefore imperative for a more profound comprehension of the pathological and pathophysiological mechanisms implicated in a wide array of diseases. Researches show that methylation modifications can exert either promotive or inhibitory effects on cell ferroptosis. Consequently, this review offers a comprehensive overview of the pivotal role played by methylation in ferroptosis, elucidating its associated factors and underlying mechanisms.</p>","PeriodicalId":15224,"journal":{"name":"Journal of Cardiovascular Translational Research","volume":" ","pages":"1219-1228"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12265-024-10539-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Methylation modification is a crucial epigenetic alteration encompassing RNA methylation, DNA methylation, and histone methylation. Ferroptosis represents a newly discovered form of programmed cell death (PCD) in 2012, which is characterized by iron-dependent lipid peroxidation. The comprehensive investigation of ferroptosis is therefore imperative for a more profound comprehension of the pathological and pathophysiological mechanisms implicated in a wide array of diseases. Researches show that methylation modifications can exert either promotive or inhibitory effects on cell ferroptosis. Consequently, this review offers a comprehensive overview of the pivotal role played by methylation in ferroptosis, elucidating its associated factors and underlying mechanisms.

Abstract Image

甲基化在铁变态反应中的作用
甲基化修饰是一种重要的表观遗传学改变,包括 RNA 甲基化、DNA 甲基化和组蛋白甲基化。铁蜕变是 2012 年新发现的一种程序性细胞死亡(PCD)形式,其特点是铁依赖性脂质过氧化。因此,要想更深入地了解与多种疾病相关的病理和病理生理机制,就必须对铁变态反应进行全面研究。研究表明,甲基化修饰可对细胞铁氧化产生促进或抑制作用。因此,本综述全面概述了甲基化在铁变态反应中的关键作用,阐明了其相关因素和内在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cardiovascular Translational Research
Journal of Cardiovascular Translational Research CARDIAC & CARDIOVASCULAR SYSTEMS-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.10
自引率
2.90%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Translational Research (JCTR) is a premier journal in cardiovascular translational research. JCTR is the journal of choice for authors seeking the broadest audience for emerging technologies, therapies and diagnostics, pre-clinical research, and first-in-man clinical trials. JCTR''s intent is to provide a forum for critical evaluation of the novel cardiovascular science, to showcase important and clinically relevant aspects of the new research, as well as to discuss the impediments that may need to be overcome during the translation to patient care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信