{"title":"One-Pot Detection of Proteins Using a Two-Way Extension-Based Assay with Cas12a.","authors":"Yahui Gao, Yan Shan Ang, Lin-Yue Lanry Yung","doi":"10.1021/acssensors.4c00370","DOIUrl":null,"url":null,"abstract":"<p><p>Protein biomarkers are an important class of biomarkers in disease diagnosis and are traditionally detected by enzyme-linked immunosorbent assay and mass spectrometry, which involve multiple steps and a complex workflow. In recent years, many CRISPR-Cas12a-based methods for protein detection have been developed; however, most of them have not overcome the workflow complications observed in traditional assays, limiting their applicability in point-of-care testing. In this work, we designed a single-step, one-pot, and proximity-based isothermal immunoassay integrating CRISPR Cas12a for homogeneous protein target detection with a simplified workflow and high sensitivity. Probes consisting of different binders (small molecule, aptamer, and antibody) conjugated with oligonucleotides undergo two-way extension upon binding to the protein targets, leading to downstream DNA amplification by a pair of nicking enzymes and polymerases to generate target sequences for Cas12a signal generation. We used the streptavidin-biotin model to demonstrate the design of our assay and proved that all three elements of protein detection (target protein binding, DNA amplification, and Cas12a signal generation) could coexist in one pot and proceed isothermally in a single buffer system at a low reaction volume of 10 μL. The plug-and-play applicability of our assay has been successfully demonstrated using four different protein targets, streptavidin, PDGF-BB, antidigoxigenin antibody, and IFNγ, with the limit of detection ranging from fM to pM.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c00370","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protein biomarkers are an important class of biomarkers in disease diagnosis and are traditionally detected by enzyme-linked immunosorbent assay and mass spectrometry, which involve multiple steps and a complex workflow. In recent years, many CRISPR-Cas12a-based methods for protein detection have been developed; however, most of them have not overcome the workflow complications observed in traditional assays, limiting their applicability in point-of-care testing. In this work, we designed a single-step, one-pot, and proximity-based isothermal immunoassay integrating CRISPR Cas12a for homogeneous protein target detection with a simplified workflow and high sensitivity. Probes consisting of different binders (small molecule, aptamer, and antibody) conjugated with oligonucleotides undergo two-way extension upon binding to the protein targets, leading to downstream DNA amplification by a pair of nicking enzymes and polymerases to generate target sequences for Cas12a signal generation. We used the streptavidin-biotin model to demonstrate the design of our assay and proved that all three elements of protein detection (target protein binding, DNA amplification, and Cas12a signal generation) could coexist in one pot and proceed isothermally in a single buffer system at a low reaction volume of 10 μL. The plug-and-play applicability of our assay has been successfully demonstrated using four different protein targets, streptavidin, PDGF-BB, antidigoxigenin antibody, and IFNγ, with the limit of detection ranging from fM to pM.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.