Aqueous RAFT Dispersion Polymerization Mediated by an ω,ω-Macromolecular Chain Transfer Monomer: An Efficient Approach for Amphiphilic Branched Block Copolymers and the Assemblies.
Weihong Lin, Shuai Jia, Yingxiang Li, Li Zhang, Hong Liu, Jianbo Tan
{"title":"Aqueous RAFT Dispersion Polymerization Mediated by an ω,ω-Macromolecular Chain Transfer Monomer: An Efficient Approach for Amphiphilic Branched Block Copolymers and the Assemblies.","authors":"Weihong Lin, Shuai Jia, Yingxiang Li, Li Zhang, Hong Liu, Jianbo Tan","doi":"10.1021/acsmacrolett.4c00353","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, an ω,ω-macromolecular chain transfer monomer (macro-CTM) containing a RAFT (reversible addition-fragmentation chain transfer) group and a methacryloyl group was synthesized and used to mediate photoinitiated RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA) in water. The macro-CTM undergoes a self-condensing vinyl polymerization (SCVP) mechanism under RAFT dispersion polymerization conditions, leading to the formation of amphiphilic branched block copolymers and the assemblies. Compared with RAFT solution polymerization, it was found that the SCVP process was promoted under RAFT dispersion polymerization conditions. Morphologies of branched block copolymer assemblies could be controlled by varying the monomer concentration and the [HPMA]/[macro-CTM] ratio. The branched block copolymer vesicles could be used as seeds for seeded RAFT emulsion polymerization, and framboidal vesicles were successfully obtained. Finally, degrees of branching of branched block copolymers could be further controlled by using a binary mixture of the macro-CTM and a linear macro-RAFT agent or a small molecule CTM. We believe that this study not only provides a versatile strategy for the preparation of branched block copolymer assemblies but also offers important insights into polymer synthesis via heterogeneous RAFT polymerization.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, an ω,ω-macromolecular chain transfer monomer (macro-CTM) containing a RAFT (reversible addition-fragmentation chain transfer) group and a methacryloyl group was synthesized and used to mediate photoinitiated RAFT dispersion polymerization of hydroxypropyl methacrylate (HPMA) in water. The macro-CTM undergoes a self-condensing vinyl polymerization (SCVP) mechanism under RAFT dispersion polymerization conditions, leading to the formation of amphiphilic branched block copolymers and the assemblies. Compared with RAFT solution polymerization, it was found that the SCVP process was promoted under RAFT dispersion polymerization conditions. Morphologies of branched block copolymer assemblies could be controlled by varying the monomer concentration and the [HPMA]/[macro-CTM] ratio. The branched block copolymer vesicles could be used as seeds for seeded RAFT emulsion polymerization, and framboidal vesicles were successfully obtained. Finally, degrees of branching of branched block copolymers could be further controlled by using a binary mixture of the macro-CTM and a linear macro-RAFT agent or a small molecule CTM. We believe that this study not only provides a versatile strategy for the preparation of branched block copolymer assemblies but also offers important insights into polymer synthesis via heterogeneous RAFT polymerization.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.