Byeong-Min Song, Gun-Hee Lee, Sang-Min Kang, Dongseob Tark
{"title":"Evaluation of vaccine efficacy with 2B/T epitope conjugated porcine IgG-Fc recombinants against foot-and-mouth disease virus.","authors":"Byeong-Min Song, Gun-Hee Lee, Sang-Min Kang, Dongseob Tark","doi":"10.1292/jvms.23-0480","DOIUrl":null,"url":null,"abstract":"<p><p>The inactivated vaccine is effective in controlling foot-and-mouth disease (FMD), but it has drawbacks such as the need for a biosafety level 3 laboratory facility to handle live foot-and-mouth disease virus (FMDV), high production costs, and biological safety risks. In response to these challenges, we developed a new recombinant protein vaccine (2BT-pIgG-Fc) containing porcine IgG-Fc to enhance protein stability in the body. This vaccine incorporates two-repeat B-cell and one-single T-cell epitope derived from O/Jincheon/SKR/2014. Our study confirmed that 2BT-pIgG-Fc and a commercial FMDV vaccine induced FMDV-specific antibodies in guinea pigs at 28 days post-vaccination. The percentage inhibition (PI) value of 2BT-pIgG-Fc was 90.43%, and the commercial FMDV vaccine was 81.75%. The PI value of 2BT-pIgG-Fc was 8.68% higher than that of commercial FMDV vaccine. In pigs, the primary target animals for FMDV, all five individuals produced FMDV-specific antibodies 42 days after vaccination with 2BT-pIgG-Fc. Furthermore, serum from 2BT-pIgG-Fc-vaccinated pigs exhibited neutralizing ability against FMDV infection. Intriguingly, the 2BT-pIgG-Fc recombinant demonstrated FMDV-specific antibody production rates and neutralization efficiency similar to commercial inactivated vaccines. This study illustrates the potential to enhance vaccine efficacy by strategically combining well-known antigenic domains in the development of recombinant protein-based vaccines.</p>","PeriodicalId":49959,"journal":{"name":"Journal of Veterinary Medical Science","volume":" ","pages":"999-1007"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Veterinary Medical Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1292/jvms.23-0480","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The inactivated vaccine is effective in controlling foot-and-mouth disease (FMD), but it has drawbacks such as the need for a biosafety level 3 laboratory facility to handle live foot-and-mouth disease virus (FMDV), high production costs, and biological safety risks. In response to these challenges, we developed a new recombinant protein vaccine (2BT-pIgG-Fc) containing porcine IgG-Fc to enhance protein stability in the body. This vaccine incorporates two-repeat B-cell and one-single T-cell epitope derived from O/Jincheon/SKR/2014. Our study confirmed that 2BT-pIgG-Fc and a commercial FMDV vaccine induced FMDV-specific antibodies in guinea pigs at 28 days post-vaccination. The percentage inhibition (PI) value of 2BT-pIgG-Fc was 90.43%, and the commercial FMDV vaccine was 81.75%. The PI value of 2BT-pIgG-Fc was 8.68% higher than that of commercial FMDV vaccine. In pigs, the primary target animals for FMDV, all five individuals produced FMDV-specific antibodies 42 days after vaccination with 2BT-pIgG-Fc. Furthermore, serum from 2BT-pIgG-Fc-vaccinated pigs exhibited neutralizing ability against FMDV infection. Intriguingly, the 2BT-pIgG-Fc recombinant demonstrated FMDV-specific antibody production rates and neutralization efficiency similar to commercial inactivated vaccines. This study illustrates the potential to enhance vaccine efficacy by strategically combining well-known antigenic domains in the development of recombinant protein-based vaccines.
期刊介绍:
JVMS is a peer-reviewed journal and publishes a variety of papers on veterinary science from basic research to applied science and clinical research. JVMS is published monthly and consists of twelve issues per year. Papers are from the areas of anatomy, physiology, pharmacology, toxicology, pathology, immunology, microbiology, virology, parasitology, internal medicine, surgery, clinical pathology, theriogenology, avian disease, public health, ethology, and laboratory animal science. Although JVMS has played a role in publishing the scientific achievements of Japanese researchers and clinicians for many years, it now also accepts papers submitted from all over the world.