Spectral optimization using fast kV switching and filtration for photon counting CT with realistic detector responses: a simulation study.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2024-12-01 Epub Date: 2024-07-25 DOI:10.1117/1.JMI.11.S1.S12805
Sen Wang, Yirong Yang, Debashish Pal, Zhye Yin, Jonathan S Maltz, Norbert J Pelc, Adam S Wang
{"title":"Spectral optimization using fast kV switching and filtration for photon counting CT with realistic detector responses: a simulation study.","authors":"Sen Wang, Yirong Yang, Debashish Pal, Zhye Yin, Jonathan S Maltz, Norbert J Pelc, Adam S Wang","doi":"10.1117/1.JMI.11.S1.S12805","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Photon counting CT (PCCT) provides spectral measurements for material decomposition. However, the image noise (at a fixed dose) depends on the source spectrum. Our study investigates the potential benefits from spectral optimization using fast kV switching and filtration to reduce noise in material decomposition.</p><p><strong>Approach: </strong>The effect of the input spectra on noise performance in both two-basis material decomposition and three-basis material decomposition was compared using Cramer-Rao lower bound analysis in the projection domain and in a digital phantom study in the image domain. The fluences of different spectra were normalized using the CT dose index to maintain constant dose levels. Four detector response models based on Si or CdTe were included in the analysis.</p><p><strong>Results: </strong>For single kV scans, kV selection can be optimized based on the imaging task and object size. Furthermore, our results suggest that noise in material decomposition can be substantially reduced with fast kV switching. For two-material decomposition, fast kV switching reduces the standard deviation (SD) by <math><mrow><mo>∼</mo> <mn>10</mn> <mo>%</mo></mrow> </math> . For three-material decomposition, greater noise reduction in material images was found with fast kV switching (26.2% for calcium and 25.8% for iodine, in terms of SD), which suggests that challenging tasks benefit more from the richer spectral information provided by fast kV switching.</p><p><strong>Conclusions: </strong>The performance of PCCT in material decomposition can be improved by optimizing source spectrum settings. Task-specific tube voltages can be selected for single kV scans. Also, our results demonstrate that utilizing fast kV switching can substantially reduce the noise in material decomposition for both two- and three-material decompositions, and a fixed Gd filter can further enhance such improvements for two-material decomposition.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 Suppl 1","pages":"S12805"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.S1.S12805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Photon counting CT (PCCT) provides spectral measurements for material decomposition. However, the image noise (at a fixed dose) depends on the source spectrum. Our study investigates the potential benefits from spectral optimization using fast kV switching and filtration to reduce noise in material decomposition.

Approach: The effect of the input spectra on noise performance in both two-basis material decomposition and three-basis material decomposition was compared using Cramer-Rao lower bound analysis in the projection domain and in a digital phantom study in the image domain. The fluences of different spectra were normalized using the CT dose index to maintain constant dose levels. Four detector response models based on Si or CdTe were included in the analysis.

Results: For single kV scans, kV selection can be optimized based on the imaging task and object size. Furthermore, our results suggest that noise in material decomposition can be substantially reduced with fast kV switching. For two-material decomposition, fast kV switching reduces the standard deviation (SD) by 10 % . For three-material decomposition, greater noise reduction in material images was found with fast kV switching (26.2% for calcium and 25.8% for iodine, in terms of SD), which suggests that challenging tasks benefit more from the richer spectral information provided by fast kV switching.

Conclusions: The performance of PCCT in material decomposition can be improved by optimizing source spectrum settings. Task-specific tube voltages can be selected for single kV scans. Also, our results demonstrate that utilizing fast kV switching can substantially reduce the noise in material decomposition for both two- and three-material decompositions, and a fixed Gd filter can further enhance such improvements for two-material decomposition.

利用快速 kV 切换和滤波对具有真实探测器响应的光子计数 CT 进行光谱优化:模拟研究。
目的:光子计数 CT(PCCT)可提供材料分解的光谱测量。然而,图像噪声(在固定剂量下)取决于光源光谱。我们的研究调查了利用快速 kV 切换和过滤进行光谱优化以降低材料分解噪声的潜在好处:方法:在投影域和图像域的数字幻影研究中,使用 Cramer-Rao 下界分析比较了输入光谱对二基线材料分解和三基线材料分解中噪声性能的影响。使用 CT 剂量指数对不同光谱的通量进行归一化处理,以保持恒定的剂量水平。分析中包括四种基于硅或碲化镉的探测器响应模型:对于单 kV 扫描,可根据成像任务和物体大小优化 kV 选择。此外,我们的结果表明,通过快速 kV 切换,可大幅降低材料分解中的噪声。对于双材料分解,快速 kV 切换可将标准偏差(SD)降低 ∼ 10 %。对于三种材料的分解,快速千伏切换能更大程度地降低材料图像中的噪声(就标准偏差而言,钙为 26.2%,碘为 25.8%),这表明快速千伏切换提供的更丰富的光谱信息更有利于完成具有挑战性的任务:结论:通过优化源光谱设置,可以提高 PCCT 在材料分解方面的性能。可为单 kV 扫描选择特定任务的管电压。此外,我们的研究结果表明,利用快速 kV 切换可以大大降低两种和三种材料分解时的材料分解噪声,而固定的钆滤波器可以进一步提高两种材料分解时的噪声改善效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信