{"title":"p38-MAPK is prerequisite for the synthesis of SARS-CoV-2 protein.","authors":"Priyasi Mittal, Nitin Khandelwal, Yogesh Chander, Assim Verma, Ram Kumar, Chayanika Putatunda, Sanjay Barua, Baldev Raj Gulati, Naveen Kumar","doi":"10.1007/s13337-024-00873-y","DOIUrl":null,"url":null,"abstract":"<p><p>The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-<i>α</i> knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38<i>α</i>, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.</p>","PeriodicalId":23708,"journal":{"name":"VirusDisease","volume":"35 2","pages":"329-337"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VirusDisease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13337-024-00873-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-α knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38α, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.
期刊介绍:
VirusDisease, formerly known as ''Indian Journal of Virology'', publishes original research on all aspects of viruses infecting animal, human, plant, fish and other living organisms.