Marijana Lipovac , Laura Téblick , Margo Bell , Anne Van Caesbroeck , Annemie De Smet , Severien Van Keer , Peter Delputte , Ilse De Coster , Wiebren A.A. Tjalma , Alex Vorsters
{"title":"Time-resolved fluorescence (TRF) for total IgG and HPV16-specific antibody detection in first-void urine and serum: A comparative study","authors":"Marijana Lipovac , Laura Téblick , Margo Bell , Anne Van Caesbroeck , Annemie De Smet , Severien Van Keer , Peter Delputte , Ilse De Coster , Wiebren A.A. Tjalma , Alex Vorsters","doi":"10.1016/j.jviromet.2024.115003","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies demonstrated that human papillomavirus (HPV) specific immunoglobulins (IgG) are present and detectable in non-invasively collected first-void urine (FVU) samples. As IgG levels in urine are low, we evaluated the potential of a highly sensitive HPV16-specific assay based on time-resolved fluorescence, DELFIA, and compared it with three immunoassays, GST-L1-MIA, M4ELISA, and M9ELISA. A total of 225 paired serum and FVU samples from two cohorts of healthy female volunteers were analyzed. Strong Spearman rank correlations between HPV16-specific IgG results measured with DELFIA, M4ELISA, GST-L1-MIA, and M9ELISA were found for both sample types (r<sub>s</sub> > 0.80). Additionally, total human IgG results, determined in all samples using HTRF human IgG kit and BioPlex Pro™ Human Isotyping Assay, were compared. Moderate correlations between total human IgG concentrations in FVU samples were found for the two total IgG assays (r<sub>s</sub> ≥ 0.42, p < 0.0001), while correlations for serum were non-significant. In conclusion, the HPV16-DELFIA assay is usable for detecting HPV16-specific antibodies in FVU and serum samples. As total human IgG remains an interesting parameter for the normalization of HPV-specific IgG in FVU, the accuracy of both assays needs to be validated further.</p></div>","PeriodicalId":17663,"journal":{"name":"Journal of virological methods","volume":"329 ","pages":"Article 115003"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166093424001277/pdfft?md5=d36b7582e62632418fa9ebef64ad79af&pid=1-s2.0-S0166093424001277-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of virological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166093424001277","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent studies demonstrated that human papillomavirus (HPV) specific immunoglobulins (IgG) are present and detectable in non-invasively collected first-void urine (FVU) samples. As IgG levels in urine are low, we evaluated the potential of a highly sensitive HPV16-specific assay based on time-resolved fluorescence, DELFIA, and compared it with three immunoassays, GST-L1-MIA, M4ELISA, and M9ELISA. A total of 225 paired serum and FVU samples from two cohorts of healthy female volunteers were analyzed. Strong Spearman rank correlations between HPV16-specific IgG results measured with DELFIA, M4ELISA, GST-L1-MIA, and M9ELISA were found for both sample types (rs > 0.80). Additionally, total human IgG results, determined in all samples using HTRF human IgG kit and BioPlex Pro™ Human Isotyping Assay, were compared. Moderate correlations between total human IgG concentrations in FVU samples were found for the two total IgG assays (rs ≥ 0.42, p < 0.0001), while correlations for serum were non-significant. In conclusion, the HPV16-DELFIA assay is usable for detecting HPV16-specific antibodies in FVU and serum samples. As total human IgG remains an interesting parameter for the normalization of HPV-specific IgG in FVU, the accuracy of both assays needs to be validated further.
期刊介绍:
The Journal of Virological Methods focuses on original, high quality research papers that describe novel and comprehensively tested methods which enhance human, animal, plant, bacterial or environmental virology and prions research and discovery.
The methods may include, but not limited to, the study of:
Viral components and morphology-
Virus isolation, propagation and development of viral vectors-
Viral pathogenesis, oncogenesis, vaccines and antivirals-
Virus replication, host-pathogen interactions and responses-
Virus transmission, prevention, control and treatment-
Viral metagenomics and virome-
Virus ecology, adaption and evolution-
Applied virology such as nanotechnology-
Viral diagnosis with novelty and comprehensive evaluation.
We seek articles, systematic reviews, meta-analyses and laboratory protocols that include comprehensive technical details with statistical confirmations that provide validations against current best practice, international standards or quality assurance programs and which advance knowledge in virology leading to improved medical, veterinary or agricultural practices and management.