Lara Krüger, Ali Hedar, Alexander Simon, Tanja Spethmann, Axel Heinemann, Lennart Viezens, Amy L. Lenz, Michael Amling, Frank Timo Beil, Michael Hahn, Tim Rolvien
{"title":"Influence of the transverse tarsal arch on radiological components of progressive collapsing foot deformity","authors":"Lara Krüger, Ali Hedar, Alexander Simon, Tanja Spethmann, Axel Heinemann, Lennart Viezens, Amy L. Lenz, Michael Amling, Frank Timo Beil, Michael Hahn, Tim Rolvien","doi":"10.1002/jor.25946","DOIUrl":null,"url":null,"abstract":"<p>The importance of the transverse tarsal arch (TTA) has recently been extensively reevaluated and has even been considered to play a greater role in foot stability than the medial longitudinal arch (MLA). However, the relevance of this observation in the context of common clinical foot disorders, such as progressive collapsing foot deformity (PCFD), has not yet been fully clarified. In this biomechanical study, we examined ten pairs of human cadaveric feet by serial weight-bearing cone-beam computed tomography under controlled loading using a custom-designed testing machine. The MLA and TTA were transected separately, alternating the order in two study groups. A semiautomated three-dimensional evaluation of their influence on three components of PCFD, namely collapse of the longitudinal arch (sagittal Meary's angle), hindfoot alignment (sagittal talocalcaneal angle), and forefoot abduction (axial Meary's angle), was performed. Both arches had a relevant effect on collapse of the longitudinal arch, however the effect of transecting the MLA was stronger compared to the TTA (sagittal Meary's angle, 7.4° (95%CI 3.8° to 11.0°) vs. 3.2° (95%CI 0.5° to 5.9°); <i>p</i> = 0.021). Both arches had an equally pronounced effect on forefoot abduction (axial Meary's angle, 4.6° (95%CI 2.0° to 7.1°) vs. 3.0° (95%CI 0.6° to 5.3°); <i>p</i> = 0.239). Neither arch showed a consistent effect on hindfoot alignment. In conclusion, weakness of the TTA has a decisive influence on radiological components of PCFD, but not greater than that of the MLA. Our findings contribute to a deeper understanding and further development of treatment concepts for flatfoot disorders.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":"42 12","pages":"2752-2760"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jor.25946","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jor.25946","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of the transverse tarsal arch (TTA) has recently been extensively reevaluated and has even been considered to play a greater role in foot stability than the medial longitudinal arch (MLA). However, the relevance of this observation in the context of common clinical foot disorders, such as progressive collapsing foot deformity (PCFD), has not yet been fully clarified. In this biomechanical study, we examined ten pairs of human cadaveric feet by serial weight-bearing cone-beam computed tomography under controlled loading using a custom-designed testing machine. The MLA and TTA were transected separately, alternating the order in two study groups. A semiautomated three-dimensional evaluation of their influence on three components of PCFD, namely collapse of the longitudinal arch (sagittal Meary's angle), hindfoot alignment (sagittal talocalcaneal angle), and forefoot abduction (axial Meary's angle), was performed. Both arches had a relevant effect on collapse of the longitudinal arch, however the effect of transecting the MLA was stronger compared to the TTA (sagittal Meary's angle, 7.4° (95%CI 3.8° to 11.0°) vs. 3.2° (95%CI 0.5° to 5.9°); p = 0.021). Both arches had an equally pronounced effect on forefoot abduction (axial Meary's angle, 4.6° (95%CI 2.0° to 7.1°) vs. 3.0° (95%CI 0.6° to 5.3°); p = 0.239). Neither arch showed a consistent effect on hindfoot alignment. In conclusion, weakness of the TTA has a decisive influence on radiological components of PCFD, but not greater than that of the MLA. Our findings contribute to a deeper understanding and further development of treatment concepts for flatfoot disorders.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.