Hepatic stearoyl-CoA desaturase-1 deficiency induces fibrosis and hepatocellular carcinoma-related gene activation under a high carbohydrate low fat diet
{"title":"Hepatic stearoyl-CoA desaturase-1 deficiency induces fibrosis and hepatocellular carcinoma-related gene activation under a high carbohydrate low fat diet","authors":"","doi":"10.1016/j.bbalip.2024.159538","DOIUrl":null,"url":null,"abstract":"<div><p>Stearoyl-CoA desaturase-1 (SCD1) is a pivotal enzyme in lipogenesis, which catalyzes the synthesis of monounsaturated fatty acids (MUFA) from saturated fatty acids, whose ablation downregulates lipid synthesis, preventing steatosis and obesity. Yet deletion of SCD1 promotes hepatic inflammation and endoplasmic reticulum stress, raising the question of whether hepatic SCD1 deficiency promotes further liver damage, including fibrosis. To delineate whether SCD1 deficiency predisposes the liver to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), we employed in vivo SCD1 deficient global and liver-specific mouse models fed a high carbohydrate low-fat diet and in vitro established AML12 mouse cells. The absence of liver SCD1 remarkably increased the saturation of liver lipid species, as indicated by lipidomic analysis, and led to hepatic fibrosis. Consistently, SCD1 deficiency promoted hepatic gene expression related to fibrosis, cirrhosis, and HCC. Deletion of SCD1 increased the circulating levels of Osteopontin, known to be increased in fibrosis, and alpha-fetoprotein, often used as an early marker and a prognostic marker for patients with HCC. De novo lipogenesis or dietary supplementation of oleate, an SCD1-generated MUFA, restored the gene expression related to fibrosis, cirrhosis, and HCC. Although SCD1 deficient mice are protected against obesity and fatty liver, our results show that MUFA deprivation results in liver injury, including fibrosis, thus providing novel insights between MUFA insufficiency and pathways leading to fibrosis, cirrhosis, and HCC under lean non-steatotic conditions.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138819812400088X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is a pivotal enzyme in lipogenesis, which catalyzes the synthesis of monounsaturated fatty acids (MUFA) from saturated fatty acids, whose ablation downregulates lipid synthesis, preventing steatosis and obesity. Yet deletion of SCD1 promotes hepatic inflammation and endoplasmic reticulum stress, raising the question of whether hepatic SCD1 deficiency promotes further liver damage, including fibrosis. To delineate whether SCD1 deficiency predisposes the liver to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), we employed in vivo SCD1 deficient global and liver-specific mouse models fed a high carbohydrate low-fat diet and in vitro established AML12 mouse cells. The absence of liver SCD1 remarkably increased the saturation of liver lipid species, as indicated by lipidomic analysis, and led to hepatic fibrosis. Consistently, SCD1 deficiency promoted hepatic gene expression related to fibrosis, cirrhosis, and HCC. Deletion of SCD1 increased the circulating levels of Osteopontin, known to be increased in fibrosis, and alpha-fetoprotein, often used as an early marker and a prognostic marker for patients with HCC. De novo lipogenesis or dietary supplementation of oleate, an SCD1-generated MUFA, restored the gene expression related to fibrosis, cirrhosis, and HCC. Although SCD1 deficient mice are protected against obesity and fatty liver, our results show that MUFA deprivation results in liver injury, including fibrosis, thus providing novel insights between MUFA insufficiency and pathways leading to fibrosis, cirrhosis, and HCC under lean non-steatotic conditions.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.