Changes in the taxonomic composition of soil bacterial communities under different inter-row tillage managements in a sloping vineyard of the Balaton Uplands (Hungary).
Balázs Zoltán Besze, Andrea K Borsodi, Melinda Megyes, Tibor Zsigmond, Ágota Horel
{"title":"Changes in the taxonomic composition of soil bacterial communities under different inter-row tillage managements in a sloping vineyard of the Balaton Uplands (Hungary).","authors":"Balázs Zoltán Besze, Andrea K Borsodi, Melinda Megyes, Tibor Zsigmond, Ágota Horel","doi":"10.1007/s42977-024-00234-2","DOIUrl":null,"url":null,"abstract":"<p><p>The common grape (Vitis vinifera L.) has been cultivated for thousands of years. Nowadays, it is cultivated using a variety of tillage practices that affect the structure of the soil microbial communities and thus the health of the vine. The aim of this study was to explore and compare the effects of tillage (shallow tillage with bare soil) and no-tillage (perennial grass cover) practices on soil physical and chemical properties and soil bacterial community diversities in a small catchment. Soil samples were taken in July and October 2020 at different slope positions of two vineyards exposed to erosion. The two sampling sites were separated by the agricultural inter-row management type: tilled and no-tilled slopes. The taxonomic diversity of bacterial communities was determined using 16S rRNA gene-based amplicon sequencing method on Illumina MiSeq platform. Based on the examined soil properties, the sampling areas were separated from each other according to the positions of the upper and lower slopes and the sampling times. Both the tilled and no-tilled soil samples were dominated by sequences assigned to phyla Pseudomonadota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Gemmatimonadota. The results showed that tillage had no significant effect compared to the no-tilled samples in the studied area. Water runoff and seasonally changed soil physical and chemical properties affected mainly the bacterial community structures.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-024-00234-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The common grape (Vitis vinifera L.) has been cultivated for thousands of years. Nowadays, it is cultivated using a variety of tillage practices that affect the structure of the soil microbial communities and thus the health of the vine. The aim of this study was to explore and compare the effects of tillage (shallow tillage with bare soil) and no-tillage (perennial grass cover) practices on soil physical and chemical properties and soil bacterial community diversities in a small catchment. Soil samples were taken in July and October 2020 at different slope positions of two vineyards exposed to erosion. The two sampling sites were separated by the agricultural inter-row management type: tilled and no-tilled slopes. The taxonomic diversity of bacterial communities was determined using 16S rRNA gene-based amplicon sequencing method on Illumina MiSeq platform. Based on the examined soil properties, the sampling areas were separated from each other according to the positions of the upper and lower slopes and the sampling times. Both the tilled and no-tilled soil samples were dominated by sequences assigned to phyla Pseudomonadota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Gemmatimonadota. The results showed that tillage had no significant effect compared to the no-tilled samples in the studied area. Water runoff and seasonally changed soil physical and chemical properties affected mainly the bacterial community structures.
Biologia futuraAgricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍:
How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica).
In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.