Constructed Mott–Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O2 Battery

IF 26.6 1区 材料科学 Q1 Engineering
Yongji Xia, Le Wang, Guiyang Gao, Tianle Mao, Zhenjia Wang, Xuefeng Jin, Zheyu Hong, Jiajia Han, Dong-Liang Peng, Guanghui Yue
{"title":"Constructed Mott–Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O2 Battery","authors":"Yongji Xia,&nbsp;Le Wang,&nbsp;Guiyang Gao,&nbsp;Tianle Mao,&nbsp;Zhenjia Wang,&nbsp;Xuefeng Jin,&nbsp;Zheyu Hong,&nbsp;Jiajia Han,&nbsp;Dong-Liang Peng,&nbsp;Guanghui Yue","doi":"10.1007/s40820-024-01476-4","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>A carbon free self supported Mott-Schottky heterostructure was constructed as an efficient cathode catalyst for lithium oxygen batteries, achieving homogeneous contact between the two materials for strong interfacial interactions.</p>\n </li>\n <li>\n <p>The heterostructure triggered interfacial perturbations and band structure changes, which accelerated oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, resulting in an extremely long cycle life of 800 cycles and an extremely low overpotential of 0.73 V.</p>\n </li>\n <li>\n <p>Combined with advanced characterization techniques and density functional theory calculations, the underlying mechanism behind the boosted ORR/OER activities and the electrocatalytic mechanism were revealed.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01476-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • A carbon free self supported Mott-Schottky heterostructure was constructed as an efficient cathode catalyst for lithium oxygen batteries, achieving homogeneous contact between the two materials for strong interfacial interactions.

  • The heterostructure triggered interfacial perturbations and band structure changes, which accelerated oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, resulting in an extremely long cycle life of 800 cycles and an extremely low overpotential of 0.73 V.

  • Combined with advanced characterization techniques and density functional theory calculations, the underlying mechanism behind the boosted ORR/OER activities and the electrocatalytic mechanism were revealed.

Abstract Image

构建莫特-肖特基异质结构催化剂,以引发界面扰动并操纵锂-O2 电池中的氧化还原动力学。
具有高能量密度的锂氧电池(LOB)是一种前景广阔的先进储能技术。然而,在循环过程中,缓慢的阴极氧化还原动力学会导致放电产物不能及时分解,从而产生较大的极化,使电池在短时间内失效。因此,我们在钛纸(TP-NCO/MO)上巧妙地设计了一种具有莫特-肖特基异质结构的自支撑互连纳米片阵列网络 NiCo2O4/MnO2,作为 LOB 的高效阴极催化剂材料。这种异质结构可以通过引发异质界面的界面扰动,加速电子传递并影响中间体吸附过程中的电荷转移过程,从而加速氧还原和氧进化动力学,调节产物分解,有望解决上述问题。该研究利用一种简单的方法,通过构建 Mott-Schottky 异质结构巧妙地调节了放电产物的形态,为设计旨在优化反应中间产物吸附的高效催化剂提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信