{"title":"Bloodstream infection: Derivation and validation of a reliable and multidimensional prognostic score based on a machine learning model (BLISCO).","authors":"Marta Camici, Benedetta Gottardelli, Tommaso Novellino, Carlotta Masciocchi, Silvia Lamonica, Rita Murri","doi":"10.1016/j.ajic.2024.07.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A bloodstream infection (BSI) prognostic score applicable at the time of blood culture collection is missing.</p><p><strong>Methods: </strong>In total, 4,327 patients with BSIs were included, divided into a derivation (80%) and a validation dataset (20%). Forty-two variables among host-related, demographic, epidemiological, clinical, and laboratory extracted from the electronic health records were analyzed. Logistic regression was chosen for predictive scoring.</p><p><strong>Results: </strong>The 14-day mortality model included age, body temperature, blood urea nitrogen, respiratory insufficiency, platelet count, high-sensitive C-reactive protein, and consciousness status: a score of ≥ 6 was correlated to a 14-day mortality rate of 15% with a sensitivity of 0.742, a specificity of 0.727, and an area under the curve of 0.783. The 30-day mortality model further included cardiovascular diseases: a score of ≥ 6 predicting 30-day mortality rate of 15% with a sensitivity of 0.691, a specificity of 0.699, and an area under the curve of 0.697.</p><p><strong>Conclusions: </strong>A quick mortality score could represent a valid support for prognosis assessment and resources prioritizing for patients with BSIs not admitted in the intensive care unit.</p>","PeriodicalId":7621,"journal":{"name":"American journal of infection control","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of infection control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajic.2024.07.011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A bloodstream infection (BSI) prognostic score applicable at the time of blood culture collection is missing.
Methods: In total, 4,327 patients with BSIs were included, divided into a derivation (80%) and a validation dataset (20%). Forty-two variables among host-related, demographic, epidemiological, clinical, and laboratory extracted from the electronic health records were analyzed. Logistic regression was chosen for predictive scoring.
Results: The 14-day mortality model included age, body temperature, blood urea nitrogen, respiratory insufficiency, platelet count, high-sensitive C-reactive protein, and consciousness status: a score of ≥ 6 was correlated to a 14-day mortality rate of 15% with a sensitivity of 0.742, a specificity of 0.727, and an area under the curve of 0.783. The 30-day mortality model further included cardiovascular diseases: a score of ≥ 6 predicting 30-day mortality rate of 15% with a sensitivity of 0.691, a specificity of 0.699, and an area under the curve of 0.697.
Conclusions: A quick mortality score could represent a valid support for prognosis assessment and resources prioritizing for patients with BSIs not admitted in the intensive care unit.
期刊介绍:
AJIC covers key topics and issues in infection control and epidemiology. Infection control professionals, including physicians, nurses, and epidemiologists, rely on AJIC for peer-reviewed articles covering clinical topics as well as original research. As the official publication of the Association for Professionals in Infection Control and Epidemiology (APIC)