Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Sirui Song, Anfeng Wang, Siyu Wu, Huaifang Li, Hongbing He
{"title":"Biomaterial Fg/P(LLA-CL) regulates macrophage polarization and recruitment of mesenchymal stem cells after endometrial injury","authors":"Sirui Song,&nbsp;Anfeng Wang,&nbsp;Siyu Wu,&nbsp;Huaifang Li,&nbsp;Hongbing He","doi":"10.1007/s10856-024-06807-w","DOIUrl":null,"url":null,"abstract":"<div><p>The process of endometrial repair after injury involves the synergistic action of various cells including immune cells and stem cells. In this study, after combing Fibrinogen(Fg) with poly(L-lacticacid)-co-poly(ε-caprolactone)(P(LLA-CL)) by electrospinning, we placed Fg/P(LLA-CL) into the uterine cavity of endometrium-injured rats, and bioinformatic analysis revealed that Fg/P(LLA-CL) may affect inflammatory response and stem cell biological behavior. Therefore, we verified that Fg/P(LLA-CL) could inhibit the lipopolysaccharide (LPS)-stimulated macrophages from switching to the pro-inflammatory M1 phenotype in vitro. Moreover, in the rat model of endometrial injury, Fg/P(LLA-CL) effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype and enhanced the presence of mesenchymal stem cells at the injury site. Overall, Fg/P(LLA-CL) exhibits significant influence on macrophage polarization and stem cell behavior in endometrial injury, justifying further exploration for potential therapeutic applications in endometrial and other tissue injuries.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06807-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The process of endometrial repair after injury involves the synergistic action of various cells including immune cells and stem cells. In this study, after combing Fibrinogen(Fg) with poly(L-lacticacid)-co-poly(ε-caprolactone)(P(LLA-CL)) by electrospinning, we placed Fg/P(LLA-CL) into the uterine cavity of endometrium-injured rats, and bioinformatic analysis revealed that Fg/P(LLA-CL) may affect inflammatory response and stem cell biological behavior. Therefore, we verified that Fg/P(LLA-CL) could inhibit the lipopolysaccharide (LPS)-stimulated macrophages from switching to the pro-inflammatory M1 phenotype in vitro. Moreover, in the rat model of endometrial injury, Fg/P(LLA-CL) effectively promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype and enhanced the presence of mesenchymal stem cells at the injury site. Overall, Fg/P(LLA-CL) exhibits significant influence on macrophage polarization and stem cell behavior in endometrial injury, justifying further exploration for potential therapeutic applications in endometrial and other tissue injuries.

Graphical Abstract

Abstract Image

生物材料Fg/P(LLA-CL)可调节巨噬细胞极化和子宫内膜损伤后间充质干细胞的招募。
子宫内膜损伤后的修复过程涉及免疫细胞和干细胞等多种细胞的协同作用。本研究将纤溶酶原(Fg)与聚(L-乳酸)-共聚(ε-己内酯)(P(LLA-CL))通过电纺结合后,将Fg/P(LLA-CL)置入子宫内膜损伤大鼠的宫腔,生物信息学分析表明Fg/P(LLA-CL)可能影响炎症反应和干细胞生物学行为。因此,我们在体外验证了Fg/P(LLA-CL)能抑制脂多糖(LPS)刺激的巨噬细胞向促炎的M1表型转换。此外,在大鼠子宫内膜损伤模型中,Fg/P(LLA-CL)能有效促进巨噬细胞向抗炎M2表型极化,并增强损伤部位间充质干细胞的存在。总之,Fg/P(LLA-CL)对子宫内膜损伤中巨噬细胞的极化和干细胞行为有显著影响,值得进一步探索其在子宫内膜和其他组织损伤中的潜在治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信