Esther J. Belikoff , Rebecca J. Davis , Megan E. Williamson, John W. Britt, Maxwell J. Scott
{"title":"Identification of a gene promoter active in Lucilia sericata larval salivary glands using a rapid transient expression assay","authors":"Esther J. Belikoff , Rebecca J. Davis , Megan E. Williamson, John W. Britt, Maxwell J. Scott","doi":"10.1016/j.ibmb.2024.104163","DOIUrl":null,"url":null,"abstract":"<div><p>Tissue-specific gene promoters are desired as they provide the specificity needed for control of gene expression in transgenic animals. Here we describe a relatively rapid two-component transient expression assay that was used to identify a gene promoter active in the larval salivary glands of the green blow fly, <em>Lucilia sericata</em>. Sterile <em>L.</em> <em>sericata</em> maggots are widely used for wound debridement. A larval salivary gland gene promoter could be used to make maggots that secrete factors for enhanced wound therapy. Embryos from a line that carry a tetracycline transactivator (tTA)-activated red fluorescent protein gene were injected with plasmid DNA with the tTA gene driven by a constitutive or tissue-specific gene promoter. The hatched larvae were reared on diet and then examined for red fluorescence. A promoter from the <em>LsCG30371</em> gene was active in the larval salivary glands. The tissue-specificity of the promoter was subsequently confirmed with stable transgenic lines that carried the <em>LsCG3</em>0371-tTA gene. The relatively rapid transient expression assay could potentially be used to determine the tissue-specificity of other gene promoters. Further, the stable <em>LsCG3</em>0371-tTA lines could be used to make sterile maggots that secrete factors from the salivary glands for enhanced wound healing.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"173 ","pages":"Article 104163"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174824000948","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tissue-specific gene promoters are desired as they provide the specificity needed for control of gene expression in transgenic animals. Here we describe a relatively rapid two-component transient expression assay that was used to identify a gene promoter active in the larval salivary glands of the green blow fly, Lucilia sericata. Sterile L.sericata maggots are widely used for wound debridement. A larval salivary gland gene promoter could be used to make maggots that secrete factors for enhanced wound therapy. Embryos from a line that carry a tetracycline transactivator (tTA)-activated red fluorescent protein gene were injected with plasmid DNA with the tTA gene driven by a constitutive or tissue-specific gene promoter. The hatched larvae were reared on diet and then examined for red fluorescence. A promoter from the LsCG30371 gene was active in the larval salivary glands. The tissue-specificity of the promoter was subsequently confirmed with stable transgenic lines that carried the LsCG30371-tTA gene. The relatively rapid transient expression assay could potentially be used to determine the tissue-specificity of other gene promoters. Further, the stable LsCG30371-tTA lines could be used to make sterile maggots that secrete factors from the salivary glands for enhanced wound healing.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.