{"title":"Construction of ternary heterostructure of zeolite/Fe3O4/CuS/CuWO4 as a reusable: Characterization studies","authors":"Alyaa Hussein Ali, Abeer I. Alwared","doi":"10.1002/apj.3125","DOIUrl":null,"url":null,"abstract":"<p>The presence of pharmaceutical pollutants in the environment has become a growing concern due to their persistence and toxic nature. In response to this issue, semiconductor photocatalyst materials have emerged as promising candidates for environmental pollutant removal, particularly under solar light irradiation. In this study, we developed a novel zeolite/Fe<sub>3</sub>O<sub>4</sub>/CuS/CuWO<sub>4</sub> heterojunction nanocomposite through a simple and facile method. The fabrication process involved a multistep approach wherein Fe<sub>3</sub>O<sub>4</sub>, CuS, and CuWO<sub>4</sub> were incorporated onto the surface of pure zeolite nanoparticles. X-ray diffraction, scanning electron microscope, transmission electron microscope, ultraviolet–visible diffuse reflectance spectroscopy, Fourier transform infrared, photoluminescence, and vibrating sample magnetometry were analyzed. The results demonstrated that the zeolite/Fe<sub>3</sub>O<sub>4</sub>/CuS/CuWO<sub>4</sub> heterojunction nanocomposite exhibited a synergistic integration of excellent properties, indicative of the successful construction of a heterostructure within the nanocomposite. Furthermore, the photocatalytic efficiency of the nanocomposite was evaluated for the degradation of the pharmaceutical pollutant fluoroquinolone levofloxacin (LEVO), and it outperformed individual photocatalysts. Notably, the zeolite/Fe<sub>3</sub>O<sub>4/</sub>CuS/CuWO<sub>4</sub> nanocomposite achieved an impressive degradation rate of approximately 82.67% of LEVO after 120 min of exposure. Importantly, the synthesized nanocomposite demonstrated excellent reusability, with a photodegradation efficiency of 60.45% after the fifth cycle of LEVO degradation, as there was no significant loss in photocatalytic activity over repeated cycles. Furthermore the highest total organic carbon removal efficiency estimated is 57.43% for heterojunction nanocomposite. These findings highlight the potential of the zeolite/Fe<sub>3</sub>O<sub>4</sub>/CuS/CuWO<sub>4</sub> heterojunction nanocomposite as an effective, eco-friendly photocatalyst for pharmaceutical pollutant removal from the environment.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3125","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The presence of pharmaceutical pollutants in the environment has become a growing concern due to their persistence and toxic nature. In response to this issue, semiconductor photocatalyst materials have emerged as promising candidates for environmental pollutant removal, particularly under solar light irradiation. In this study, we developed a novel zeolite/Fe3O4/CuS/CuWO4 heterojunction nanocomposite through a simple and facile method. The fabrication process involved a multistep approach wherein Fe3O4, CuS, and CuWO4 were incorporated onto the surface of pure zeolite nanoparticles. X-ray diffraction, scanning electron microscope, transmission electron microscope, ultraviolet–visible diffuse reflectance spectroscopy, Fourier transform infrared, photoluminescence, and vibrating sample magnetometry were analyzed. The results demonstrated that the zeolite/Fe3O4/CuS/CuWO4 heterojunction nanocomposite exhibited a synergistic integration of excellent properties, indicative of the successful construction of a heterostructure within the nanocomposite. Furthermore, the photocatalytic efficiency of the nanocomposite was evaluated for the degradation of the pharmaceutical pollutant fluoroquinolone levofloxacin (LEVO), and it outperformed individual photocatalysts. Notably, the zeolite/Fe3O4/CuS/CuWO4 nanocomposite achieved an impressive degradation rate of approximately 82.67% of LEVO after 120 min of exposure. Importantly, the synthesized nanocomposite demonstrated excellent reusability, with a photodegradation efficiency of 60.45% after the fifth cycle of LEVO degradation, as there was no significant loss in photocatalytic activity over repeated cycles. Furthermore the highest total organic carbon removal efficiency estimated is 57.43% for heterojunction nanocomposite. These findings highlight the potential of the zeolite/Fe3O4/CuS/CuWO4 heterojunction nanocomposite as an effective, eco-friendly photocatalyst for pharmaceutical pollutant removal from the environment.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).