Kento Nakamine, Yuto Yokoyama, William Kai Alexander Worby, Masakazu Muto, Yoshiyuki Tagawa
{"title":"Flow birefringence of cellulose nanocrystal suspensions in three-dimensional flow fields: revisiting the stress-optic law","authors":"Kento Nakamine, Yuto Yokoyama, William Kai Alexander Worby, Masakazu Muto, Yoshiyuki Tagawa","doi":"10.1007/s10570-024-06045-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically investigates the flow birefringence of cellulose nanocrystal (CNC) suspensions. The aim is to clarify the importance of the stress component along the camera’s optical axis in the stress-optic law (SOL), which describes the relationship between birefringence, the retardation of transmitted polarized light, and the stress field. More than 100 datasets pertaining to the retardation of CNC suspensions (concentrations of 0.1, 0.3, 0.5, and 1.0 wt%) in a laminar flow field within a rectangular channel (aspect ratios of 0.1, 1, and 3) are systematically obtained. The measured retardation data are compared with the predictions given by the conventional SOL excluding the stress component along the camera’s optical axis and by the SOL including these components as second-order terms (2nd-order SOL). The results show that the 2nd-order SOL gives a significantly better agreement with the measurements. Based on the 2nd-order SOL, the retardation at the center of the channel, where the effect of the stress component along the camera’s optical axis is most pronounced, is predicted to be proportional to the square of the flow rate, which agrees with the experimental data. The results confirm the importance of considering the stress component along the camera’s optical axis in the flow birefringence of CNC suspensions at high flow rates, even for quasi-two-dimensional channel flow.</p></div>","PeriodicalId":511,"journal":{"name":"Cellulose","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10570-024-06045-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellulose","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10570-024-06045-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
This study systematically investigates the flow birefringence of cellulose nanocrystal (CNC) suspensions. The aim is to clarify the importance of the stress component along the camera’s optical axis in the stress-optic law (SOL), which describes the relationship between birefringence, the retardation of transmitted polarized light, and the stress field. More than 100 datasets pertaining to the retardation of CNC suspensions (concentrations of 0.1, 0.3, 0.5, and 1.0 wt%) in a laminar flow field within a rectangular channel (aspect ratios of 0.1, 1, and 3) are systematically obtained. The measured retardation data are compared with the predictions given by the conventional SOL excluding the stress component along the camera’s optical axis and by the SOL including these components as second-order terms (2nd-order SOL). The results show that the 2nd-order SOL gives a significantly better agreement with the measurements. Based on the 2nd-order SOL, the retardation at the center of the channel, where the effect of the stress component along the camera’s optical axis is most pronounced, is predicted to be proportional to the square of the flow rate, which agrees with the experimental data. The results confirm the importance of considering the stress component along the camera’s optical axis in the flow birefringence of CNC suspensions at high flow rates, even for quasi-two-dimensional channel flow.
期刊介绍:
Cellulose is an international journal devoted to the dissemination of research and scientific and technological progress in the field of cellulose and related naturally occurring polymers. The journal is concerned with the pure and applied science of cellulose and related materials, and also with the development of relevant new technologies. This includes the chemistry, biochemistry, physics and materials science of cellulose and its sources, including wood and other biomass resources, and their derivatives. Coverage extends to the conversion of these polymers and resources into manufactured goods, such as pulp, paper, textiles, and manufactured as well natural fibers, and to the chemistry of materials used in their processing. Cellulose publishes review articles, research papers, and technical notes.