On non-Zariski density of (D,S)-integral points in forward orbits and the Subspace Theorem

IF 0.6 3区 数学 Q3 MATHEMATICS
Nathan Grieve , Chatchai Noytaptim
{"title":"On non-Zariski density of (D,S)-integral points in forward orbits and the Subspace Theorem","authors":"Nathan Grieve ,&nbsp;Chatchai Noytaptim","doi":"10.1016/j.jnt.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>Working over a base number field <strong>K</strong>, we study the attractive question of Zariski non-density for <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>-integral points in <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> the forward <em>f</em>-orbit of a rational point <span><math><mi>x</mi><mo>∈</mo><mi>X</mi><mo>(</mo><mi>K</mi><mo>)</mo></math></span>. Here, <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>X</mi></math></span> is a regular surjective self-map for <em>X</em> a geometrically irreducible projective variety over <strong>K</strong>. Given a non-zero and effective <em>f</em>-quasi-polarizable Cartier divisor <em>D</em> on <em>X</em> and defined over <strong>K</strong>, our main result gives a sufficient condition, that is formulated in terms of the <em>f</em>-dynamics of <em>D</em>, for non-Zariski density of certain dynamically defined subsets of <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For the case of <span><math><mo>(</mo><mi>D</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span>-integral points, this result gives a sufficient condition for non-Zariski density of integral points in <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. Our approach expands on that of Yasufuku, <span><span>[13]</span></span>, building on earlier work of Silverman <span><span>[11]</span></span>. Our main result gives an unconditional form of the main results of <span><span>[13]</span></span>; the key arithmetic input to our main theorem is the Subspace Theorem of Schmidt in the generalized form that has been given by Ru and Vojta in <span><span>[10]</span></span> and expanded upon in <span><span>[3]</span></span> and <span><span>[6]</span></span>.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"265 ","pages":"Pages 36-47"},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001495/pdfft?md5=b3dd7c5b16ab793f55d50824e16a3394&pid=1-s2.0-S0022314X24001495-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001495","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Working over a base number field K, we study the attractive question of Zariski non-density for (D,S)-integral points in Of(x) the forward f-orbit of a rational point xX(K). Here, f:XX is a regular surjective self-map for X a geometrically irreducible projective variety over K. Given a non-zero and effective f-quasi-polarizable Cartier divisor D on X and defined over K, our main result gives a sufficient condition, that is formulated in terms of the f-dynamics of D, for non-Zariski density of certain dynamically defined subsets of Of(x). For the case of (D,S)-integral points, this result gives a sufficient condition for non-Zariski density of integral points in Of(x). Our approach expands on that of Yasufuku, [13], building on earlier work of Silverman [11]. Our main result gives an unconditional form of the main results of [13]; the key arithmetic input to our main theorem is the Subspace Theorem of Schmidt in the generalized form that has been given by Ru and Vojta in [10] and expanded upon in [3] and [6].

关于正向轨道上 (D,S) 积分点的非扎里斯基密度和子空间定理
在基数域上,我们研究了有理点的前-轨道上-积分点的扎里斯基非密度这一有吸引力的问题。这里, 是几何上不可还原的投影变种在 .给定一个在 和 上定义的非零且有效的准极化卡蒂埃除数,我们的主要结果给出了一个充分条件,这个充分条件是根据 、 的动态定义的某些动态子集的非扎里斯基密度来表述的。 对于积分点的情况,这个结果给出了在 的积分点的非扎里斯基密度的充分条件。我们的方法是在 Yasufuku 的基础上发展而来的,是建立在 Silverman 早期工作的基础上的。我们的主要结果给出了施密特子空间定理的主要结果的无条件形式.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信