Rational points on a class of cubic hypersurfaces

IF 1 3区 数学 Q1 MATHEMATICS
Yujiao Jiang, Tingting Wen, Wenjia Zhao
{"title":"Rational points on a class of cubic hypersurfaces","authors":"Yujiao Jiang, Tingting Wen, Wenjia Zhao","doi":"10.1515/forum-2023-0394","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>⩾</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0001.png\"/> <jats:tex-math>r\\geqslant 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be an integer and 𝑄 any positive definite quadratic form in 𝑟 variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>S</m:mi> <m:mi>Q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0002.png\"/> <jats:tex-math>S_{Q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> defined by <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>x</m:mi> <m:mn>3</m:mn> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mi>Q</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:msub> <m:mi>y</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi mathvariant=\"normal\">…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>y</m:mi> <m:mi>r</m:mi> </m:msub> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mi>z</m:mi> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0003.png\"/> <jats:tex-math>x^{3}=Q(y_{1},\\dots,y_{r})z</jats:tex-math> </jats:alternatives> </jats:inline-formula>. This confirms Manin’s conjecture for any <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi>S</m:mi> <m:mi>Q</m:mi> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0002.png\"/> <jats:tex-math>S_{Q}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our proof is based on analytic methods, and uses some estimates for character sums and moments of 𝐿-functions. In particular, one of the ingredients is Siegel’s mass formula in the argument for the case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>r</m:mi> <m:mo>=</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2023-0394_ineq_0005.png\"/> <jats:tex-math>r=3</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2023-0394","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let r 3 r\geqslant 3 be an integer and 𝑄 any positive definite quadratic form in 𝑟 variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces S Q S_{Q} defined by x 3 = Q ( y 1 , , y r ) z x^{3}=Q(y_{1},\dots,y_{r})z . This confirms Manin’s conjecture for any S Q S_{Q} . Our proof is based on analytic methods, and uses some estimates for character sums and moments of 𝐿-functions. In particular, one of the ingredients is Siegel’s mass formula in the argument for the case r = 3 r=3 .
一类立方超曲面上的有理点
设 r ⩾ 3 r\geqslant 3 为整数,𝑄 为 𝑟 变量中的任意正定二次型。我们用省力误差项建立了奇异超曲面 S Q S_{Q} 上有界高的有理点数的渐近公式,定义为 x 3 = Q ( y 1 , ... , y r ) z x^{3}=Q(y_{1},\dots,y_{r})z 。这证实了马宁对任意 S Q S_{Q} 的猜想。我们的证明基于分析方法,并使用了𝐿 函数的特征和与矩的一些估计值。特别是,其中一个要素是西格尔的质量公式,它是针对 r = 3 r=3 情况的论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信