Evolution of Microstructure, Texture and Mechanical Properties of ECAP-Processed ZK60 Magnesium Alloy

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Iraj Khoubrou, Bahram Nami, Seyyed Mehdi Miresmaeili, Milad Yazdani
{"title":"Evolution of Microstructure, Texture and Mechanical Properties of ECAP-Processed ZK60 Magnesium Alloy","authors":"Iraj Khoubrou, Bahram Nami, Seyyed Mehdi Miresmaeili, Milad Yazdani","doi":"10.1007/s12540-024-01730-9","DOIUrl":null,"url":null,"abstract":"<p>In this work, the influence of equal channel angular pressing (ECAP) on the microstructure, texture, and mechanical properties of ZK60 Mg alloy was investigated. The deformation process by equal channel angular pressing has been performed at the three temperatures of 588, 628, and 668 K and different ECAP pass numbers up to 4. The microstructural evolution was investigated using an optical microscope (OM), scanning electron microscope (SEM) equipped with an EDS detector, and X-ray diffraction (XRD) analyses. After the ECAP process, the microstructure of the cast alloy with an average grain size of about 208 μm converted to the bimodal grain structure. The fractions of fine grains increase and their size decreases with the increasing ECAP pass number and the decreasing deformation processing temperature. The results show that the ECAP process improves the mechanical properties at room temperature and weakens them at high temperatures. In addition, enhancement of the deformation severity through increasing the number of ECAP passes and decreasing the ECAP temperature led to an increase in the hardness of the alloy at room temperature and a decrease in its creep resistance at high temperatures.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01730-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the influence of equal channel angular pressing (ECAP) on the microstructure, texture, and mechanical properties of ZK60 Mg alloy was investigated. The deformation process by equal channel angular pressing has been performed at the three temperatures of 588, 628, and 668 K and different ECAP pass numbers up to 4. The microstructural evolution was investigated using an optical microscope (OM), scanning electron microscope (SEM) equipped with an EDS detector, and X-ray diffraction (XRD) analyses. After the ECAP process, the microstructure of the cast alloy with an average grain size of about 208 μm converted to the bimodal grain structure. The fractions of fine grains increase and their size decreases with the increasing ECAP pass number and the decreasing deformation processing temperature. The results show that the ECAP process improves the mechanical properties at room temperature and weakens them at high temperatures. In addition, enhancement of the deformation severity through increasing the number of ECAP passes and decreasing the ECAP temperature led to an increase in the hardness of the alloy at room temperature and a decrease in its creep resistance at high temperatures.

Graphical Abstract

Abstract Image

ECAP 加工 ZK60 镁合金的显微组织、纹理和力学性能的演变
本文研究了等沟道角压(ECAP)对 ZK60 镁合金的微观结构、纹理和机械性能的影响。在 588、628 和 668 K 三种温度下以及不同的 ECAP 次数(最多 4 次)下进行了等沟角压制变形过程。使用光学显微镜(OM)、配备 EDS 检测器的扫描电子显微镜(SEM)和 X 射线衍射(XRD)分析研究了微观结构的演变。经过 ECAP 处理后,平均晶粒大小约为 208 μm 的铸造合金的微观结构转变为双峰晶粒结构。随着 ECAP 道次的增加和变形加工温度的降低,细晶粒的比例增加,尺寸减小。结果表明,ECAP 工艺改善了室温下的机械性能,并削弱了高温下的机械性能。此外,通过增加 ECAP 次数和降低 ECAP 温度来提高变形严重程度,导致合金在室温下的硬度增加,而在高温下的抗蠕变性降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信