Chi Zhang , Ge Song , Hui Guo , Jiafan Ren , Chunhua Bai
{"title":"Influences of oscillation on the physical stability and explosion characteristics of solid‒liquid mixed fuel","authors":"Chi Zhang , Ge Song , Hui Guo , Jiafan Ren , Chunhua Bai","doi":"10.1016/j.dt.2024.05.014","DOIUrl":null,"url":null,"abstract":"<div><div>The stratification phenomenon resulting from differences in the physical properties of solid‒liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation. The effects of oscillation on the physical stability of mixed fuel with two solid‒liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60–300 r/min. The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system. When the mass ratio of liquid components is controlled at 66.9%, 64.7%, 62.6% the final explosion characteristics are stable, with a maximum difference of only 0.71%. The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%, 69.6%, 67.7%. The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume, and the repeatability is poor, with a maximum standard deviation of 82.736, which is much higher than the ratio without stratification. Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 191-198"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724001284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The stratification phenomenon resulting from differences in the physical properties of solid‒liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation. The effects of oscillation on the physical stability of mixed fuel with two solid‒liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60–300 r/min. The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system. When the mass ratio of liquid components is controlled at 66.9%, 64.7%, 62.6% the final explosion characteristics are stable, with a maximum difference of only 0.71%. The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%, 69.6%, 67.7%. The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume, and the repeatability is poor, with a maximum standard deviation of 82.736, which is much higher than the ratio without stratification. Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.