Riemann–Hilbert method to the Ablowitz–Ladik equation: Higher-order cases

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Huan Liu, Jing Shen, Xianguo Geng
{"title":"Riemann–Hilbert method to the Ablowitz–Ladik equation: Higher-order cases","authors":"Huan Liu,&nbsp;Jing Shen,&nbsp;Xianguo Geng","doi":"10.1111/sapm.12748","DOIUrl":null,"url":null,"abstract":"<p>We focus on the Ablowitz–Ladik equation on the zero background, specifically considering the scenario of <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> pairs of multiple poles. Our first goal was to establish a mapping between the initial data and the scattering data, which allowed us to introduce a direct problem by analyzing the discrete spectrum associated with <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> pairs of higher-order zeros. Next, we constructed another mapping from the scattering data to a <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>×</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$2\\times 2$</annotation>\n </semantics></math> matrix Riemann–Hilbert (RH) problem equipped with several residue conditions set at <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> pairs of multiple poles. By characterizing the inverse problem on the basis of this RH problem, we are able to derive higher-order soliton solutions in the reflectionless case.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the Ablowitz–Ladik equation on the zero background, specifically considering the scenario of N $N$ pairs of multiple poles. Our first goal was to establish a mapping between the initial data and the scattering data, which allowed us to introduce a direct problem by analyzing the discrete spectrum associated with N $N$ pairs of higher-order zeros. Next, we constructed another mapping from the scattering data to a 2 × 2 $2\times 2$ matrix Riemann–Hilbert (RH) problem equipped with several residue conditions set at N $N$ pairs of multiple poles. By characterizing the inverse problem on the basis of this RH problem, we are able to derive higher-order soliton solutions in the reflectionless case.

阿布罗维茨-拉迪克方程的黎曼-希尔伯特方法:高阶情况
我们重点研究了零背景下的阿布罗维茨-拉迪克方程,特别考虑了多极点对的情况。我们的第一个目标是建立初始数据和散射数据之间的映射,这使我们能够通过分析与高阶零点对相关的离散谱来直接引入问题。接下来,我们构建了另一个从散射数据到矩阵黎曼-希尔伯特(RH)问题的映射,该问题在多极点对上设置了多个残差条件。在这个 RH 问题的基础上描述逆问题,我们就能推导出无反射情况下的高阶孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信