Classification of spatial dynamics of a vector–host epidemic model in advective heterogeneous environment

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuwei Feng, Jinliang Wang
{"title":"Classification of spatial dynamics of a vector–host epidemic model in advective heterogeneous environment","authors":"Yuwei Feng,&nbsp;Jinliang Wang","doi":"10.1111/sapm.12744","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose and analyze a reaction–diffusion vector–host disease model with advection effect in an one-dimensional domain. We introduce the basic reproduction number (BRN) <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math> and establish the threshold dynamics of the model in terms of <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math>. When there are no advection terms, we revisit the asymptotic behavior of <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math> w.r.t. diffusion rate and the monotonicity of <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math> under certain conditions. Furthermore, we obtain the asymptotic behavior of <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math> under the influence of advection effects. Our results indicate that when the advection rate is large enough relative to the diffusion rate, <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math> tends to be the value of local basic reproduction number (LBRN) at the downstream end, which enriches the asymptotic behavior results of the BRN in nonadvection heterogeneous environments. In addition, we explore the level set classification of <span></span><math>\n <semantics>\n <msub>\n <mi>ℜ</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\Re _0$</annotation>\n </semantics></math>, that is, there exists a unique critical surface indicating that the disease-free equilibrium is globally asymptotically stable on one side of the surface, while it is unstable on the other side. Our results also reveal that the aggregation phenomenon will occur, namely, when the ratio of advection rate to diffusion rate is large enough, infected individuals will gather at the downstream end.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze a reaction–diffusion vector–host disease model with advection effect in an one-dimensional domain. We introduce the basic reproduction number (BRN) 0 $\Re _0$ and establish the threshold dynamics of the model in terms of 0 $\Re _0$ . When there are no advection terms, we revisit the asymptotic behavior of 0 $\Re _0$ w.r.t. diffusion rate and the monotonicity of 0 $\Re _0$ under certain conditions. Furthermore, we obtain the asymptotic behavior of 0 $\Re _0$ under the influence of advection effects. Our results indicate that when the advection rate is large enough relative to the diffusion rate, 0 $\Re _0$ tends to be the value of local basic reproduction number (LBRN) at the downstream end, which enriches the asymptotic behavior results of the BRN in nonadvection heterogeneous environments. In addition, we explore the level set classification of 0 $\Re _0$ , that is, there exists a unique critical surface indicating that the disease-free equilibrium is globally asymptotically stable on one side of the surface, while it is unstable on the other side. Our results also reveal that the aggregation phenomenon will occur, namely, when the ratio of advection rate to diffusion rate is large enough, infected individuals will gather at the downstream end.

平流异质环境中病媒-宿主流行病模型的空间动力学分类
本文提出并分析了一维域中具有平流效应的反应-扩散矢量-宿主疾病模型。我们引入了基本繁殖数(BRN),并建立了该模型的阈值动力学。 当不存在平流项时,我们重温了扩散率的渐近行为,以及在某些条件下扩散率的单调性。此外,我们还得到了平流效应影响下的渐近行为。我们的结果表明,当平流速率相对于扩散速率足够大时,下游端的局部基本繁殖数(LBRN)值趋于,这丰富了非平流异质环境中局部基本繁殖数的渐近行为结果。此外,我们还探索了Ⅳ的水平集分类,即存在一个唯一的临界面,表明无病平衡在临界面的一侧是全局渐近稳定的,而在另一侧则是不稳定的。我们的结果还揭示了聚集现象,即当平流速率与扩散速率之比足够大时,感染个体将聚集在下游一端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信