The coupled Hirota equations with a 3 × 3 $3\times 3$ Lax pair: Painlevé-type asymptotics in transition zone

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiaodan Zhao, Lei Wang
{"title":"The coupled Hirota equations with a \n \n \n 3\n ×\n 3\n \n $3\\times 3$\n Lax pair: Painlevé-type asymptotics in transition zone","authors":"Xiaodan Zhao,&nbsp;Lei Wang","doi":"10.1111/sapm.12745","DOIUrl":null,"url":null,"abstract":"<p>We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3\\times 3$</annotation>\n </semantics></math> Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>x</mi>\n <mo>/</mo>\n <mi>t</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <mn>12</mn>\n <mi>α</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n <msup>\n <mi>t</mi>\n <mrow>\n <mn>2</mn>\n <mo>/</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>≤</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$|x/t-1/(12\\alpha)|t^{2/3}\\le C$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$C&amp;gt;0$</annotation>\n </semantics></math> is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a <span></span><math>\n <semantics>\n <mrow>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$3\\times 3$</annotation>\n </semantics></math> matrix RH problem and appear in a variety of random matrix models.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Painlevé asymptotics for a solution of the integrable coupled Hirota equations with a 3 × 3 $3\times 3$ Lax pair whose initial data decay rapidly at infinity. Using the Riemann–Hilbert (RH) techniques and Deift–Zhou nonlinear steepest descent arguments, in a transition zone defined by | x / t 1 / ( 12 α ) | t 2 / 3 C $|x/t-1/(12\alpha)|t^{2/3}\le C$ , where C > 0 $C&gt;0$ is a constant, it turns out that the leading-order term to the solution can be expressed in terms of the solution of a coupled Painlevé II equations, which are associated with a 3 × 3 $3\times 3$ matrix RH problem and appear in a variety of random matrix models.

具有 3×3$3 次 Lax 对的耦合 Hirota 方程:过渡带中的潘列韦型渐近线
我们考虑了具有 Lax 对的可积分耦合 Hirota 方程解的 Painlevé 渐近线,其初始数据在无限远处迅速衰减。利用黎曼-希尔伯特(RH)技术和戴夫特-周(Deift-Zhou)非线性最陡下降论证,在由 , 定义的过渡区,其中是一个常数,结果发现解的前导阶项可以用耦合 Painlevé II 方程的解来表示,该方程与矩阵 RH 问题相关,出现在各种随机矩阵模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信