{"title":"On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation","authors":"Mohammad Asadzadeh, Georgios E. Zouraris","doi":"10.1111/sapm.12743","DOIUrl":null,"url":null,"abstract":"<p>We consider a model initial- and Dirichlet boundary–value problem for a nonlinear Schrödinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> and the <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <annotation>$H^1$</annotation>\n </semantics></math> norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a Courant-Friedrichs-Lewy (CFL) condition between the space mesh size and the time step sizes.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12743","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a model initial- and Dirichlet boundary–value problem for a nonlinear Schrödinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the and the norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a Courant-Friedrichs-Lewy (CFL) condition between the space mesh size and the time step sizes.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.