On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Mohammad Asadzadeh, Georgios E. Zouraris
{"title":"On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation","authors":"Mohammad Asadzadeh,&nbsp;Georgios E. Zouraris","doi":"10.1111/sapm.12743","DOIUrl":null,"url":null,"abstract":"<p>We consider a model initial- and Dirichlet boundary–value problem for a nonlinear Schrödinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> and the <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <annotation>$H^1$</annotation>\n </semantics></math> norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a Courant-Friedrichs-Lewy (CFL) condition between the space mesh size and the time step sizes.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12743","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a model initial- and Dirichlet boundary–value problem for a nonlinear Schrödinger equation in two and three space dimensions. The solution to the problem is approximated by a conservative numerical method consisting of a standard conforming finite element space discretization and a second-order, linearly implicit time stepping, yielding approximations at the nodes and at the midpoints of a nonuniform partition of the time interval. We investigate the convergence of the method by deriving optimal-order error estimates in the L 2 $L^2$ and the H 1 $H^1$ norm, under certain assumptions on the partition of the time interval and avoiding the enforcement of a Courant-Friedrichs-Lewy (CFL) condition between the space mesh size and the time step sizes.

论非线性薛定谔方程线性隐式有限元方法的收敛性
我们考虑了一个二维和三维空间非线性薛定谔方程的模型初始和狄利克边界值问题。该问题的解是通过一种保守的数值方法逼近的,该方法由标准的符合有限元空间离散化和二阶线性隐式时间步进组成,在时间间隔的非均匀分区的节点和中点处产生近似值。我们研究了该方法的收敛性,在时间间隔分区的某些假设条件下,并避免在空间网格大小和时间步长之间执行库朗-弗里德里希斯-勒维(CFL)条件,推导出了最优阶误差估计值和规范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信