Turing bifurcation in activator–inhibitor (depletion) models with cross-diffusion and nonlocal terms

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Meijia Fu, Ping Liu, Qingyan Shi
{"title":"Turing bifurcation in activator–inhibitor (depletion) models with cross-diffusion and nonlocal terms","authors":"Meijia Fu,&nbsp;Ping Liu,&nbsp;Qingyan Shi","doi":"10.1111/sapm.12749","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the instability of a constant equilibrium solution in a general activator–inhibitor (depletion) model with passive diffusion, cross-diffusion, and nonlocal terms. It is shown that nonlocal terms produce linear stability or instability, and the system may generate spatial patterns under the effect of passive diffusion and cross-diffusion. Moreover, we analyze the existence of bifurcating solutions to the general model using the bifurcation theory. At last, the theoretical results are applied to the spatial water–biomass system combined with cross-diffusion and nonlocal grazing and Holling–Tanner predator–prey model with nonlocal prey competition.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12749","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the instability of a constant equilibrium solution in a general activator–inhibitor (depletion) model with passive diffusion, cross-diffusion, and nonlocal terms. It is shown that nonlocal terms produce linear stability or instability, and the system may generate spatial patterns under the effect of passive diffusion and cross-diffusion. Moreover, we analyze the existence of bifurcating solutions to the general model using the bifurcation theory. At last, the theoretical results are applied to the spatial water–biomass system combined with cross-diffusion and nonlocal grazing and Holling–Tanner predator–prey model with nonlocal prey competition.

带有交叉扩散和非局部项的激活剂-抑制剂(耗竭)模型中的图灵分岔
在本文中,我们考虑了具有被动扩散、交叉扩散和非局部项的一般激活剂-抑制剂(耗竭)模型中恒定平衡解的不稳定性。结果表明,非局部项会产生线性稳定性或不稳定性,在被动扩散和交叉扩散的作用下,系统可能会产生空间模式。此外,我们还利用分岔理论分析了一般模型分岔解的存在性。最后,我们将理论结果应用于结合了交叉扩散和非局部放牧的空间水-生物量系统以及非局部猎物竞争的霍林-坦纳捕食者-猎物模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信