Evolution of the Climate Forcing During the Two Years After the Hunga Tonga-Hunga Ha'apai Eruption

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
M. R. Schoeberl, Y. Wang, G. Taha, D. J. Zawada, R. Ueyama, A. Dessler
{"title":"Evolution of the Climate Forcing During the Two Years After the Hunga Tonga-Hunga Ha'apai Eruption","authors":"M. R. Schoeberl,&nbsp;Y. Wang,&nbsp;G. Taha,&nbsp;D. J. Zawada,&nbsp;R. Ueyama,&nbsp;A. Dessler","doi":"10.1029/2024JD041296","DOIUrl":null,"url":null,"abstract":"<p>We calculate the climate forcing for the 2 ys after the 15 January 2022, Hunga Tonga-Hunga Ha'apai (Hunga) eruption. We use satellite observations of stratospheric aerosols, trace gases and temperatures to compute the tropopause radiative flux changes relative to climatology. Overall, the net downward radiative flux decreased compared to climatology. The Hunga stratospheric water vapor anomaly initially increases the downward infrared radiative flux, but this forcing diminishes as the anomaly disperses. The Hunga aerosols cause a solar flux reduction that dominates the net flux change over most of the 2 yrs period. Hunga induced temperature changes produce a decrease in downward long-wave flux. Hunga induced ozone reduction increases the short-wave downward flux creating small sub-tropical increase in total flux from mid-2022 to 2023. By the end of 2023, most of the Hunga induced radiative forcing changes have disappeared. There is some disagreement in the satellite measured stratospheric aerosol optical depth (SAOD) observations which we view as a measure of the uncertainty; however, the SAOD uncertainty does not alter our conclusion that, overall, aerosols dominate the radiative flux changes.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041296","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041296","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We calculate the climate forcing for the 2 ys after the 15 January 2022, Hunga Tonga-Hunga Ha'apai (Hunga) eruption. We use satellite observations of stratospheric aerosols, trace gases and temperatures to compute the tropopause radiative flux changes relative to climatology. Overall, the net downward radiative flux decreased compared to climatology. The Hunga stratospheric water vapor anomaly initially increases the downward infrared radiative flux, but this forcing diminishes as the anomaly disperses. The Hunga aerosols cause a solar flux reduction that dominates the net flux change over most of the 2 yrs period. Hunga induced temperature changes produce a decrease in downward long-wave flux. Hunga induced ozone reduction increases the short-wave downward flux creating small sub-tropical increase in total flux from mid-2022 to 2023. By the end of 2023, most of the Hunga induced radiative forcing changes have disappeared. There is some disagreement in the satellite measured stratospheric aerosol optical depth (SAOD) observations which we view as a measure of the uncertainty; however, the SAOD uncertainty does not alter our conclusion that, overall, aerosols dominate the radiative flux changes.

Abstract Image

洪加-汤加-洪加下阿帕伊火山爆发后两年内气候作用力的演变
我们计算了2022年1月15日洪加-汤加-洪加-哈帕伊(Hunga Ha'apai)火山爆发后2年的气候作用力。我们利用平流层气溶胶、痕量气体和温度的卫星观测数据,计算对流层顶辐射通量相对于气候学的变化。总体而言,与气候学相比,向下的净辐射通量有所下降。洪加平流层水汽异常最初会增加向下的红外辐射通量,但随着异常的消散,这种强迫作用会减弱。洪加气溶胶导致太阳通量减少,在两年的大部分时间里,这种减少主导了净通量的变化。洪加气溶胶引起的温度变化导致向下的长波通量减少。洪加诱发的臭氧减少增加了短波向下通量,导致 2022 年中期至 2023 年期间亚热带总通量小幅增加。到 2023 年底,大部分洪加诱导的辐射强迫变化已经消失。卫星测量的平流层气溶胶光学深度(SAOD)观测结果存在一些差异,我们将其视为不确定性的一种度量;然而,SAOD 的不确定性并不会改变我们的结论,即总体而言,气溶胶主导了辐射通量的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信