Sharp non-uniqueness for the 3D hyperdissipative Navier-Stokes equations: Beyond the Lions exponent

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yachun Li , Peng Qu , Zirong Zeng , Deng Zhang
{"title":"Sharp non-uniqueness for the 3D hyperdissipative Navier-Stokes equations: Beyond the Lions exponent","authors":"Yachun Li ,&nbsp;Peng Qu ,&nbsp;Zirong Zeng ,&nbsp;Deng Zhang","doi":"10.1016/j.matpur.2024.103602","DOIUrl":null,"url":null,"abstract":"<div><p>We study the 3D hyperdissipative Navier-Stokes equations on the torus, where the viscosity exponent <em>α</em> can be larger than the Lions exponent 5/4. It is well-known that, due to Lions <span><span>[1]</span></span>, for any <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> divergence-free initial data, there exist unique smooth Leray-Hopf solutions when <span><math><mi>α</mi><mo>≥</mo><mn>5</mn><mo>/</mo><mn>4</mn></math></span>. We prove that even in this high dissipative regime, the uniqueness would fail in the supercritical spaces <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><msubsup><mrow><mi>W</mi></mrow><mrow><mi>x</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>p</mi></mrow></msubsup></math></span>, in view of the Ladyženskaja-Prodi-Serrin criteria. The non-uniqueness is proved in the strong sense and, in particular, yields the sharpness at two endpoints <span><math><mo>(</mo><mn>3</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>α</mi><mo>,</mo><mo>∞</mo><mo>,</mo><mi>p</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>2</mn><mi>α</mi><mo>/</mo><mi>γ</mi><mo>+</mo><mn>1</mn><mo>−</mo><mn>2</mn><mi>α</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. Moreover, the constructed solutions are allowed to coincide with the unique Leray-Hopf solutions near the initial time and, more delicately, admit the partial regularity outside a fractal set of singular times with zero Hausdorff <span><math><msup><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>η</mi></mrow><mrow><mo>⁎</mo></mrow></msub></mrow></msup></math></span> measure, where <span><math><msub><mrow><mi>η</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> is any given small positive constant. These results also provide the sharp non-uniqueness in the supercritical Lebesgue and Besov spaces. Furthermore, we prove the strong vanishing viscosity result for the hyperdissipative Navier-Stokes equations.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the 3D hyperdissipative Navier-Stokes equations on the torus, where the viscosity exponent α can be larger than the Lions exponent 5/4. It is well-known that, due to Lions [1], for any L2 divergence-free initial data, there exist unique smooth Leray-Hopf solutions when α5/4. We prove that even in this high dissipative regime, the uniqueness would fail in the supercritical spaces LtγWxs,p, in view of the Ladyženskaja-Prodi-Serrin criteria. The non-uniqueness is proved in the strong sense and, in particular, yields the sharpness at two endpoints (3/p+12α,,p) and (2α/γ+12α,γ,). Moreover, the constructed solutions are allowed to coincide with the unique Leray-Hopf solutions near the initial time and, more delicately, admit the partial regularity outside a fractal set of singular times with zero Hausdorff Hη measure, where η>0 is any given small positive constant. These results also provide the sharp non-uniqueness in the supercritical Lebesgue and Besov spaces. Furthermore, we prove the strong vanishing viscosity result for the hyperdissipative Navier-Stokes equations.

三维超耗散纳维-斯托克斯方程的尖锐非唯一性:超越狮子指数
我们研究了三维环上的超发散纳维-斯托克斯方程,其中粘度指数可以大于 Lions 5/4 指数。众所周知,由于 Lions 的存在,对于发散为零的任何初始数据,当......时存在唯一的正则 Leray-Hopf 解。我们证明,即使在这种高耗散机制下,考虑到 Ladyženskaja-Prodi-Serrin 准则,唯一性在超临界空间中也是失效的。非唯一性在强意义上得到了证明,特别是在端点和......处的最优性。此外,所构建的解与初始时间邻域内唯一的 Leray-Hopf 解重合,更微妙的是,在 Hausdorff 量为零的奇异时间分形集(其中是一个给定的小数)外允许部分正则性。这些结果还提供了超临界 Lebesgue 和 Besov 空间中的非唯一性最优性。此外,我们还证明了超耗散 Navier-Stokes 方程的强零粘性极限结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信