Karolina Kulig, Beata Morak-Młodawska, Małgorzata Jeleń, Magdalena Ziąbka, Aleksandra Owczarzy, Wojciech Rogóż, Małgorzata Maciążek-Jurczyk
{"title":"Bovine Serum Albumin Nanoparticles as a Proposed Drug Formulation for the Delivery of 10H-2,7-diazaphenothiazine","authors":"Karolina Kulig, Beata Morak-Młodawska, Małgorzata Jeleń, Magdalena Ziąbka, Aleksandra Owczarzy, Wojciech Rogóż, Małgorzata Maciążek-Jurczyk","doi":"10.1007/s10876-024-02666-1","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of new compounds and nanoparticles is one of many attempts to circumvent the drug resistance. Albumin nanoparticles are biocompatible drug carriers with an ability to incorporate drugs without modifications. 10<i>H</i>-2,7-diazphenothiazine (2,7-DAPT) is a newly phenothiazine derivative with an anticancer, immunomodulatory and anti-inflammatory activity with a low cytotoxicity toward normal splenocytes at the same time. Up to now, no administration route for 2,7-DAPT has been proposed, so the novelty of the study is synthesis of nanoparticles containing an active ingredient not yet used in the clinic. The aim of the study was to encapsulate 2,7-DAPT into bovine serum albumin (BSA) nanoparticles by desolvation method. This study was supplemented with spectroscopic studies of 2,7-DAPT, size and morphology measurements as well as release analysis at pH 7.4 and 5.6. 2,7-DAPT is a compound with high stability in solution and an ability to absorb at UV-Vis range. Based on the results of scanning electron microscopy, nanoparticles size oscillates around the value of 204 nm. The release of 2,7- DAPT from the nanoparticles was characterized by different mechanisms of release, which were dependent on the pH of the release buffer. The above results indicate the potential usefulness of the obtained nanoparticles. Due to the lack of studies of nanoparticles containing this substance, more detailed future analyses are required.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2353 - 2362"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-024-02666-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02666-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of new compounds and nanoparticles is one of many attempts to circumvent the drug resistance. Albumin nanoparticles are biocompatible drug carriers with an ability to incorporate drugs without modifications. 10H-2,7-diazphenothiazine (2,7-DAPT) is a newly phenothiazine derivative with an anticancer, immunomodulatory and anti-inflammatory activity with a low cytotoxicity toward normal splenocytes at the same time. Up to now, no administration route for 2,7-DAPT has been proposed, so the novelty of the study is synthesis of nanoparticles containing an active ingredient not yet used in the clinic. The aim of the study was to encapsulate 2,7-DAPT into bovine serum albumin (BSA) nanoparticles by desolvation method. This study was supplemented with spectroscopic studies of 2,7-DAPT, size and morphology measurements as well as release analysis at pH 7.4 and 5.6. 2,7-DAPT is a compound with high stability in solution and an ability to absorb at UV-Vis range. Based on the results of scanning electron microscopy, nanoparticles size oscillates around the value of 204 nm. The release of 2,7- DAPT from the nanoparticles was characterized by different mechanisms of release, which were dependent on the pH of the release buffer. The above results indicate the potential usefulness of the obtained nanoparticles. Due to the lack of studies of nanoparticles containing this substance, more detailed future analyses are required.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.