Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Jenny Johnson, Sajan Raj Sasirajan Littleflower, Kumaran Vediappan, Helen Annal Therese
{"title":"Electrospun Quasi-Composite Polymer Electrolyte with Hydoxyl-Anchored Aluminosilicate Zeolitic Network for Dendrite Free Lithium Metal Batteries","authors":"Jenny Johnson,&nbsp;Sajan Raj Sasirajan Littleflower,&nbsp;Kumaran Vediappan,&nbsp;Helen Annal Therese","doi":"10.1002/batt.202400299","DOIUrl":null,"url":null,"abstract":"<p>All-solid-state lithium metal batteries have reshaped emerging safe battery technologies. However, their low metal ion transport and unstable electrode electrolyte interface make their mass production a huge question. To bridge the emerging solid state and traditional liquid electrolytes, we focus on Quasi-Composite Polymer electrolytes (QCPE). Herein, we develop QCPE with active 3D alumino-silicate zeolitic ion conduction pathways embedded in a polymer matrix using two techniques- solution casting and electrospinning. Electrospun QCPE outperforms Solution cast QCPE by achieving high amorphous behavior. Prompt elimination of solvent during electrospinning decreases bulk resistance and increases its ionic conductivity. The Zeolitic pathway anchored by hydroxyl groups of PVA polymer acts as a highway for Li<sup>+</sup> ions. It exhibits highly stable platting stripping vs Li<sup>+</sup>/Li for 450 hours with low overpotential, confirming the interfacial compatibility and dendrite-free cycling at lithium metal anode. Controlled lithium-ion nucleation regulated by evenly distributed zeolitic pathway is an interesting front of this work. To test QCPE's performance in Lithium metal battery (LMB), the electrospun QCPE is used to fabricate LMB with LiFePO<sub>4</sub> cathode. This battery system delivered a high capacity of 155 mAh g<sup>−1</sup> at 0.1 C. In addition to the high performance, electrospun QCPE production is scalable at an industrial scale.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400299","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state lithium metal batteries have reshaped emerging safe battery technologies. However, their low metal ion transport and unstable electrode electrolyte interface make their mass production a huge question. To bridge the emerging solid state and traditional liquid electrolytes, we focus on Quasi-Composite Polymer electrolytes (QCPE). Herein, we develop QCPE with active 3D alumino-silicate zeolitic ion conduction pathways embedded in a polymer matrix using two techniques- solution casting and electrospinning. Electrospun QCPE outperforms Solution cast QCPE by achieving high amorphous behavior. Prompt elimination of solvent during electrospinning decreases bulk resistance and increases its ionic conductivity. The Zeolitic pathway anchored by hydroxyl groups of PVA polymer acts as a highway for Li+ ions. It exhibits highly stable platting stripping vs Li+/Li for 450 hours with low overpotential, confirming the interfacial compatibility and dendrite-free cycling at lithium metal anode. Controlled lithium-ion nucleation regulated by evenly distributed zeolitic pathway is an interesting front of this work. To test QCPE's performance in Lithium metal battery (LMB), the electrospun QCPE is used to fabricate LMB with LiFePO4 cathode. This battery system delivered a high capacity of 155 mAh g−1 at 0.1 C. In addition to the high performance, electrospun QCPE production is scalable at an industrial scale.

Abstract Image

电纺丝准复合聚合物电解质与水氧锚定铝硅酸盐沸石网络用于无枝晶型锂电池
全固态锂金属电池重塑了新兴的安全电池技术。然而,由于金属离子传输率低和电极电解质界面不稳定,其大规模生产成为一个巨大的问题。为了在新兴固态电解质和传统液态电解质之间架起一座桥梁,我们重点研究了准复合聚合物电解质(QCPE)。在这里,我们采用溶液浇铸和电纺丝两种技术,开发了具有活性三维铝硅酸盐沸石离子传导路径的 QCPE,并将其嵌入聚合物基质中。电纺 QCPE 的性能优于溶液浇注 QCPE,因为它具有高非晶态特性。在电纺过程中及时去除溶剂可降低体积电阻,提高离子导电率。由 PVA 聚合物的羟基锚定的沸石路径是 Li+ 离子的通道。这种聚合物在 450 小时内对 Li+/Li 进行高度稳定的电镀剥离,过电位较低,从而证实了其界面兼容性以及在锂金属阳极上的无枝晶循环。通过均匀分布的沸石途径调节锂离子成核是这项工作的一个有趣方面。为了测试 QCPE 在锂金属电池(LMB)中的性能,电纺 QCPE 被用于制造具有 LiFePO4 正极的 LMB。该电池系统在 0.1C 时可提供 155 mAh g-1 的高容量。除了高性能之外,电纺 QCPE 的生产还可扩展到工业规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信