Sustainable Silica-Carbon Nanofiber Hybrid Composite Anodes for Lithium-Ion Batteries

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Anne Beaucamp, Amaia Moreno Calvo, Deaglán Bowman, Clotilde Techouyeres, David Mc Nulty, Erlantz Lizundia, Maurice N. Collins
{"title":"Sustainable Silica-Carbon Nanofiber Hybrid Composite Anodes for Lithium-Ion Batteries","authors":"Anne Beaucamp,&nbsp;Amaia Moreno Calvo,&nbsp;Deaglán Bowman,&nbsp;Clotilde Techouyeres,&nbsp;David Mc Nulty,&nbsp;Erlantz Lizundia,&nbsp;Maurice N. Collins","doi":"10.1002/mame.202400202","DOIUrl":null,"url":null,"abstract":"<p>Alternative anode materials with increased theoretical specific capacities are under scrutinity as a replacement to graphite in lithium-ion batteries (LiBs). Silicon oxides offer increased capacities compared to graphite and do not suffer the same level of material expansion as pure Si. Consequently, they are an intermediate commercial anode material, on the pathway toward pure Si anodes. In this study, stable Silica/carbon (SiO<sub>2</sub>/C) nanofibers are successfully developed from tetraethyl orthosilicate (TEOS) using poly(vinylpyrrolidone) (PVP). The fibers show excellent stability after calcination, with silica evenly dispersed within the fibers exhibiting a surface area of 327 m<sup>2</sup> g<sup>−1</sup>. This study demonstrates that the electrochemical performance of SiO<sub>2</sub>/C composite anodes is significantly influenced by the silica content. SiO<sub>2</sub>/C composites with ≈68 at% SiO<sub>2</sub> achieve reversible capacities of 315.6 and 300.9 mAh g<sup>−1</sup>, after the 2nd, and 800th cycles, respectively, at a specific current of 100 mA g<sup>−1</sup>, with a remarkable capacity retention of 95.3%. In a second stage, lignin is added as a potential nanostructuring agent. The addition of lignin to the sample reduces the amount of silica without significantly impacting its performance and stability. Tailoring the composition of SiO<sub>2</sub>/C composite anodes enables stable capacity retention over the course of hundreds of cycles.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400202","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400202","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alternative anode materials with increased theoretical specific capacities are under scrutinity as a replacement to graphite in lithium-ion batteries (LiBs). Silicon oxides offer increased capacities compared to graphite and do not suffer the same level of material expansion as pure Si. Consequently, they are an intermediate commercial anode material, on the pathway toward pure Si anodes. In this study, stable Silica/carbon (SiO2/C) nanofibers are successfully developed from tetraethyl orthosilicate (TEOS) using poly(vinylpyrrolidone) (PVP). The fibers show excellent stability after calcination, with silica evenly dispersed within the fibers exhibiting a surface area of 327 m2 g−1. This study demonstrates that the electrochemical performance of SiO2/C composite anodes is significantly influenced by the silica content. SiO2/C composites with ≈68 at% SiO2 achieve reversible capacities of 315.6 and 300.9 mAh g−1, after the 2nd, and 800th cycles, respectively, at a specific current of 100 mA g−1, with a remarkable capacity retention of 95.3%. In a second stage, lignin is added as a potential nanostructuring agent. The addition of lignin to the sample reduces the amount of silica without significantly impacting its performance and stability. Tailoring the composition of SiO2/C composite anodes enables stable capacity retention over the course of hundreds of cycles.

Abstract Image

用于锂离子电池的可持续二氧化硅-碳纳米纤维混合复合阳极
作为锂离子电池(LiBs)中石墨的替代材料,理论比容量更大的替代负极材料正受到仔细研究。与石墨相比,硅氧化物的容量更大,而且不会像纯硅那样产生材料膨胀。因此,硅氧化物是通向纯硅负极的中间商业负极材料。在这项研究中,利用聚乙烯吡咯烷酮(PVP)从正硅酸四乙酯(TEOS)中成功开发出了稳定的二氧化硅/碳(SiO2/C)纳米纤维。纤维在煅烧后显示出极佳的稳定性,二氧化硅均匀地分散在纤维中,显示出 327 平方米 g-1 的表面积。这项研究表明,二氧化硅/C 复合阳极的电化学性能受到二氧化硅含量的显著影响。在比电流为 100 mA g-1 的条件下,二氧化硅含量≈68 at% 的 SiO2/C 复合材料在第 2 次和第 800 次循环后的可逆容量分别达到 315.6 mAh g-1 和 300.9 mAh g-1,容量保持率高达 95.3%。在第二阶段,添加木质素作为潜在的纳米结构剂。在样品中添加木质素可减少二氧化硅的用量,但不会对其性能和稳定性产生重大影响。调整 SiO2/C 复合阳极的成分可在数百次循环过程中保持稳定的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信