{"title":"Quasi-parabolic Kazhdan-Lusztig bases and reflection subgroups","authors":"Zachary Carlini, Yaolong Shen","doi":"10.1016/j.jpaa.2024.107777","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Wang and the second author constructed a bar involution and canonical basis for a quasi-permutation module of the Hecke algebra associated to a type B Weyl group <em>W</em>, where the basis is parameterized by left cosets of a quasi-parabolic reflection subgroup in <em>W</em>. In this paper we provide an alternative approach to these constructions, and then generalize these constructions to Coxeter groups which contain a product of type B Weyl groups as a parabolic subgroup.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Wang and the second author constructed a bar involution and canonical basis for a quasi-permutation module of the Hecke algebra associated to a type B Weyl group W, where the basis is parameterized by left cosets of a quasi-parabolic reflection subgroup in W. In this paper we provide an alternative approach to these constructions, and then generalize these constructions to Coxeter groups which contain a product of type B Weyl groups as a parabolic subgroup.