{"title":"Reduction map in the higher K-theory of the rings of integers in number fields","authors":"Soumyadip Sahu","doi":"10.1016/j.jpaa.2024.107771","DOIUrl":null,"url":null,"abstract":"<div><p>This article studies the reduction maps in the higher <em>K</em>-theory of the ring of integers in a number field arising from the canonical reduction maps at nonzero prime ideals. It proves an explicit density estimate for the subset of primes where the images of a fixed collection of elements vanish. Our result applies to a collection of elements possibly having different degrees and suggests that the linearly independent elements of global <em>K</em>-theory exhibit mutually independent reduction patterns. We also relate the reduction map in <em>K</em>-theory to the reduction map in stable cohomology of general linear groups. This connection allows us to examine the pullback of Quillen's <em>e</em>-classes in the cohomology of the stable general linear group over a finite field. During the proof of the main result, we construct the smallest Galois extension which trivializes a Galois cohomology class of degree one, and show that the linear independence of classes results in disjointness of corresponding field extensions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article studies the reduction maps in the higher K-theory of the ring of integers in a number field arising from the canonical reduction maps at nonzero prime ideals. It proves an explicit density estimate for the subset of primes where the images of a fixed collection of elements vanish. Our result applies to a collection of elements possibly having different degrees and suggests that the linearly independent elements of global K-theory exhibit mutually independent reduction patterns. We also relate the reduction map in K-theory to the reduction map in stable cohomology of general linear groups. This connection allows us to examine the pullback of Quillen's e-classes in the cohomology of the stable general linear group over a finite field. During the proof of the main result, we construct the smallest Galois extension which trivializes a Galois cohomology class of degree one, and show that the linear independence of classes results in disjointness of corresponding field extensions.