Reduction map in the higher K-theory of the rings of integers in number fields

Pub Date : 2024-07-23 DOI:10.1016/j.jpaa.2024.107771
Soumyadip Sahu
{"title":"Reduction map in the higher K-theory of the rings of integers in number fields","authors":"Soumyadip Sahu","doi":"10.1016/j.jpaa.2024.107771","DOIUrl":null,"url":null,"abstract":"<div><p>This article studies the reduction maps in the higher <em>K</em>-theory of the ring of integers in a number field arising from the canonical reduction maps at nonzero prime ideals. It proves an explicit density estimate for the subset of primes where the images of a fixed collection of elements vanish. Our result applies to a collection of elements possibly having different degrees and suggests that the linearly independent elements of global <em>K</em>-theory exhibit mutually independent reduction patterns. We also relate the reduction map in <em>K</em>-theory to the reduction map in stable cohomology of general linear groups. This connection allows us to examine the pullback of Quillen's <em>e</em>-classes in the cohomology of the stable general linear group over a finite field. During the proof of the main result, we construct the smallest Galois extension which trivializes a Galois cohomology class of degree one, and show that the linear independence of classes results in disjointness of corresponding field extensions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies the reduction maps in the higher K-theory of the ring of integers in a number field arising from the canonical reduction maps at nonzero prime ideals. It proves an explicit density estimate for the subset of primes where the images of a fixed collection of elements vanish. Our result applies to a collection of elements possibly having different degrees and suggests that the linearly independent elements of global K-theory exhibit mutually independent reduction patterns. We also relate the reduction map in K-theory to the reduction map in stable cohomology of general linear groups. This connection allows us to examine the pullback of Quillen's e-classes in the cohomology of the stable general linear group over a finite field. During the proof of the main result, we construct the smallest Galois extension which trivializes a Galois cohomology class of degree one, and show that the linear independence of classes results in disjointness of corresponding field extensions.

分享
查看原文
数域整数环高 K 理论中的还原映射
本文研究数域整数环高阶理论中的还原映射,这些还原映射产生于非零素数理想处的典范还原映射。它证明了一个固定元素集合的映像消失的素数子集的明确密度估计。我们的结果适用于可能具有不同度数的元素集合,并表明全局理论的线性独立元素表现出相互独立的还原模式。我们还将-理论中的还原映射与一般线性群的稳定同调中的还原映射联系起来。通过这种联系,我们可以研究有限域上一般线性群稳定同调中奎伦类的回拉。在主要结果的证明过程中,我们构造了最小的伽罗瓦扩展,它微化了阶数为 1 的伽罗瓦同调类,并证明了类的线性独立性导致了相应场扩展的不相交性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信