Weak dimension of power series rings over valuation rings

Pub Date : 2024-07-24 DOI:10.1016/j.jpaa.2024.107778
Adam Jones
{"title":"Weak dimension of power series rings over valuation rings","authors":"Adam Jones","doi":"10.1016/j.jpaa.2024.107778","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the power series ring <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span> over a valuation ring <em>R</em> of rank 1, with proper, dense value group. We give a counterexample to Hilbert's syzygy theorem for <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>, i.e. an <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>-module <em>C</em> that is flat over <em>R</em> and has flat dimension at least 2 over <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>, contradicting a previously published result. The key ingredient in our construction is an exploration of the valuation theory of <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span>. We also use this theory to give a new proof that <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>X</mi><mo>]</mo><mo>]</mo></math></span> is not a coherent ring, a fact which is essential in our construction of the module <em>C</em>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001750/pdfft?md5=7d7a61796914e797af61b233ad5207c2&pid=1-s2.0-S0022404924001750-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the power series ring R[[X]] over a valuation ring R of rank 1, with proper, dense value group. We give a counterexample to Hilbert's syzygy theorem for R[[X]], i.e. an R[[X]]-module C that is flat over R and has flat dimension at least 2 over R[[X]], contradicting a previously published result. The key ingredient in our construction is an exploration of the valuation theory of R[[X]]. We also use this theory to give a new proof that R[[X]] is not a coherent ring, a fact which is essential in our construction of the module C.

分享
查看原文
估值环上幂级数环的弱维度
我们研究了秩为 1 的值环 R 上的幂级数环 R[[X]],它具有适当的密集值群。我们给出了 R[[X]] 的希尔伯特对称定理的反例,即 R[[X]] 模块 C 在 R 上是平的,并且在 R[[X]] 上的平维至少是 2,这与之前发表的一个结果相矛盾。我们构造的关键要素是对 R[[X]] 估值理论的探索。我们还利用这一理论给出了 R[[X]] 不是相干环的新证明,这一事实对我们构造模块 C 至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信