{"title":"Extensions representing Nori-Srinivas obstruction","authors":"Yukihide Takayama","doi":"10.1016/j.jpaa.2024.107783","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> be a pair of a smooth variety <em>X</em> over an algebraically closed field <em>k</em> of characteristic <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span> and its Frobenius morphism <em>F</em>. Given a Frobenius <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-lifting <span><math><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> of the pair <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, Nori and Srinivas <span><span>[9]</span></span> determined the obstruction <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub><mo>∈</mo><mi>Ext</mi><mo>(</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><mi>B</mi><msub><mrow><mi>F</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> to Frobenius <span><math><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>k</mi><mo>)</mo></math></span>-lifting of <span><math><mo>(</mo><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>)</mo></math></span> in terms of Čech cohomology. The extension representing <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> has been only known for <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, which uses the Cartier operator. In this paper, we interpret <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> in terms of Kato's version of de Rham-Witt Cartier operator <span><span>[8]</span></span> and determine the extension representing <span><math><mi>o</mi><mi>b</mi><msub><mrow><mi>s</mi></mrow><mrow><mover><mrow><mi>X</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>,</mo><mover><mrow><mi>F</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow></msub></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a pair of a smooth variety X over an algebraically closed field k of characteristic and its Frobenius morphism F. Given a Frobenius -lifting of the pair for , Nori and Srinivas [9] determined the obstruction to Frobenius -lifting of in terms of Čech cohomology. The extension representing has been only known for , which uses the Cartier operator. In this paper, we interpret in terms of Kato's version of de Rham-Witt Cartier operator [8] and determine the extension representing for .